Post
1062
Want to validate some hparams or figure out what
I had this sitting on my drive and forgot where I pulled it together from. It's 100 classes of imagenet, 50k train and 10k val images (from ImageNet-1k train set), and 5k test images (from ImageNet-1k val set). 7.4GB instead of > 100GB for the full ImageNet-1k. This ver is not reduced resolution like some other 'mini' versions. Super easy to use with timm train/val scripts, checkout the dataset card.
I often check fine-tuning with even smaller datasets like:
* timm/resisc45
* timm/oxford-iiit-pet
But those are a bit small to train any modest size model w/o starting from pretrained weights.
timm
model to use before commiting to download or training with a large dataset? Try mini-imagenet:
timm/mini-imagenet I had this sitting on my drive and forgot where I pulled it together from. It's 100 classes of imagenet, 50k train and 10k val images (from ImageNet-1k train set), and 5k test images (from ImageNet-1k val set). 7.4GB instead of > 100GB for the full ImageNet-1k. This ver is not reduced resolution like some other 'mini' versions. Super easy to use with timm train/val scripts, checkout the dataset card.
I often check fine-tuning with even smaller datasets like:
* timm/resisc45
* timm/oxford-iiit-pet
But those are a bit small to train any modest size model w/o starting from pretrained weights.