--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - GritLM/GritLM-7B - argilla/notus-7b-v1 base_model: - GritLM/GritLM-7B - argilla/notus-7b-v1 --- # GK-inv-MoE-0.1 GK-inv-MoE-0.1 is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [GritLM/GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) * [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1) ## 🧩 Configuration ```yaml base_model: GritLM/GritLM-7B experts: - source_model: GritLM/GritLM-7B positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "I want" - "reason" - "math" - "mathematics" - "solve" - "count" - source_model: argilla/notus-7b-v1 positive_prompts: - "code" - "VB.NET" - "vb.net" - "programming" - "algorithm" - "develop" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "powermove72/GK-inv-MoE-0.1" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```