--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: allsky-stars-detected results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9952153110047847 --- # allsky-stars-detected This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0255 - Accuracy: 0.9952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1339 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0436 | 1.0 | 148 | 0.0582 | 0.9809 | | 0.0121 | 2.0 | 296 | 0.0405 | 0.9904 | | 0.0112 | 3.0 | 444 | 0.0383 | 0.9856 | | 0.01 | 4.0 | 592 | 0.0270 | 0.9952 | | 0.0098 | 5.0 | 740 | 0.0255 | 0.9952 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.0+cpu - Datasets 3.0.1 - Tokenizers 0.21.0