prajdabre commited on
Commit
9888e37
·
1 Parent(s): 1f83d09

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -32
README.md CHANGED
@@ -6,56 +6,33 @@ Usage:
6
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
7
  from transformers import AlbertTokenizer, AutoTokenizer
8
 
9
- tokenizer = AutoTokenizer.from_pretrained("prajdabre/IndicBART", do_lower_case=False, use_fast=False, keep_accents=True)
10
 
11
- # Or use tokenizer = AlbertTokenizer.from_pretrained("prajdabre/IndicBART", do_lower_case=False, use_fast=False, keep_accents=True)
12
 
13
- model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/IndicBART")
14
 
15
- # Or use model = MBartForConditionalGeneration.from_pretrained("prajdabre/IndicBART")
16
 
17
  # Some initial mapping
18
  bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
19
  eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
20
  pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
21
- # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
22
 
23
- # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
24
- inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
25
-
26
- out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]])
27
-
28
- model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
29
-
30
- # For loss
31
- model_outputs.loss ## This is not label smoothed.
32
-
33
- # For logits
34
- model_outputs.logits
35
-
36
- # For generation. Pardon the messiness. Note the decoder_start_token_id.
37
 
38
  model.eval() # Set dropouts to zero
39
 
40
- model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
41
 
42
 
43
  # Decode to get output strings
44
 
45
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
46
 
47
- print(decoded_output) # I am a boy
48
-
49
- # What if we mask?
50
-
51
- inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
52
-
53
- model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
54
-
55
- decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
56
-
57
- print(decoded_output) # I am happy
58
- ```
59
 
60
  Notes:
61
  1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
 
6
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
7
  from transformers import AlbertTokenizer, AutoTokenizer
8
 
9
+ tokenizer = AutoTokenizer.from_pretrained("prajdabre/CreoleM2M", do_lower_case=False, use_fast=False, keep_accents=True)
10
 
11
+ # Or use tokenizer = AlbertTokenizer.from_pretrained("prajdabre/CreoleM2M", do_lower_case=False, use_fast=False, keep_accents=True)
12
 
13
+ model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/CreoleM2M")
14
 
15
+ # Or use model = MBartForConditionalGeneration.from_pretrained("prajdabre/CreoleM2M")
16
 
17
  # Some initial mapping
18
  bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
19
  eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
20
  pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
21
+ # To get lang_id use any of ["<s>", "</s>", "<2acf>", "<2eng>", "<2bis>", "<2bzj>", "<2cbk>", "<2crs>", "<2djk>", "<2gul>", "<2hat>", "<2hwc>", "<2icr>", "<2jam>", "<2kri>", "<2ktu>", "<2mbf>", "<2mfe>", "<2mkn>", "<2pap>", "<2pcm>", "<2pis>", "<2rop>", "<2sag>", "<2srm>", "<2srn>", "<2tcs>", "<2tdt>", "<2tpi>"]
22
 
23
+ # First tokenize the input and outputs. The format below is how CreoleM2M was trained so the input should be "Sentence </s> <2xxx>" where xxx is the language code. Similarly, the output should be "<2yyy> Sentence </s>".
24
+ inp = tokenizer('Wen dey wen stretch him out fo whip him real hard , Paul wen tell da captain dat stay dea , “ Dis okay in da rules fo da Rome peopo ? fo you fo whip one guy dat get da same rights jalike da Rome peopo ? even one guy dat neva do notting wrong ? ' </s> <2hwc>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  model.eval() # Set dropouts to zero
27
 
28
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=60, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<eng>"))
29
 
30
 
31
  # Decode to get output strings
32
 
33
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
34
 
35
+ print(decoded_output)
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  Notes:
38
  1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.