--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: urinary_carcinoma_classifier_g001 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train[:34] args: default metrics: - name: Accuracy type: accuracy value: 0.8571428571428571 --- # urinary_carcinoma_classifier_g001 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1765 - Accuracy: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6758 | 0.5714 | | No log | 2.0 | 2 | 0.6747 | 0.5714 | | No log | 3.0 | 3 | 0.6558 | 0.5714 | | No log | 4.0 | 4 | 0.6576 | 0.5714 | | No log | 5.0 | 5 | 0.6297 | 0.5714 | | No log | 6.0 | 6 | 0.6131 | 0.5714 | | No log | 7.0 | 7 | 0.5552 | 0.5714 | | No log | 8.0 | 8 | 0.5017 | 0.7143 | | No log | 9.0 | 9 | 0.4695 | 0.8571 | | 0.2846 | 10.0 | 10 | 0.4277 | 0.8571 | | 0.2846 | 11.0 | 11 | 0.4228 | 0.8571 | | 0.2846 | 12.0 | 12 | 0.4115 | 0.8571 | | 0.2846 | 13.0 | 13 | 0.3575 | 1.0 | | 0.2846 | 14.0 | 14 | 0.4240 | 0.8571 | | 0.2846 | 15.0 | 15 | 0.3832 | 1.0 | | 0.2846 | 16.0 | 16 | 0.3363 | 1.0 | | 0.2846 | 17.0 | 17 | 0.3375 | 0.8571 | | 0.2846 | 18.0 | 18 | 0.3222 | 1.0 | | 0.2846 | 19.0 | 19 | 0.2372 | 1.0 | | 0.141 | 20.0 | 20 | 0.2795 | 1.0 | | 0.141 | 21.0 | 21 | 0.2726 | 1.0 | | 0.141 | 22.0 | 22 | 0.2010 | 1.0 | | 0.141 | 23.0 | 23 | 0.1791 | 1.0 | | 0.141 | 24.0 | 24 | 0.1794 | 1.0 | | 0.141 | 25.0 | 25 | 0.2308 | 1.0 | | 0.141 | 26.0 | 26 | 0.1686 | 1.0 | | 0.141 | 27.0 | 27 | 0.2678 | 0.8571 | | 0.141 | 28.0 | 28 | 0.3142 | 0.8571 | | 0.141 | 29.0 | 29 | 0.1509 | 1.0 | | 0.072 | 30.0 | 30 | 0.1522 | 1.0 | | 0.072 | 31.0 | 31 | 0.1862 | 1.0 | | 0.072 | 32.0 | 32 | 0.1927 | 1.0 | | 0.072 | 33.0 | 33 | 0.1600 | 1.0 | | 0.072 | 34.0 | 34 | 0.1520 | 1.0 | | 0.072 | 35.0 | 35 | 0.1377 | 1.0 | | 0.072 | 36.0 | 36 | 0.2727 | 0.8571 | | 0.072 | 37.0 | 37 | 0.1470 | 1.0 | | 0.072 | 38.0 | 38 | 0.2727 | 0.8571 | | 0.072 | 39.0 | 39 | 0.2244 | 0.8571 | | 0.0444 | 40.0 | 40 | 0.1122 | 1.0 | | 0.0444 | 41.0 | 41 | 0.2727 | 0.8571 | | 0.0444 | 42.0 | 42 | 0.2733 | 0.8571 | | 0.0444 | 43.0 | 43 | 0.2109 | 0.8571 | | 0.0444 | 44.0 | 44 | 0.3147 | 0.8571 | | 0.0444 | 45.0 | 45 | 0.3256 | 0.8571 | | 0.0444 | 46.0 | 46 | 0.2474 | 0.8571 | | 0.0444 | 47.0 | 47 | 0.2670 | 0.8571 | | 0.0444 | 48.0 | 48 | 0.2003 | 0.8571 | | 0.0444 | 49.0 | 49 | 0.2966 | 0.8571 | | 0.0361 | 50.0 | 50 | 0.1765 | 0.8571 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1