--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: urinary_carcinoma_classifier_m_rs_50 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train[:18] args: default metrics: - name: Accuracy type: accuracy value: 0.5 --- # urinary_carcinoma_classifier_m_rs_50 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6941 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6931 | 0.5 | | No log | 2.0 | 2 | 0.6935 | 0.5 | | No log | 3.0 | 3 | 0.6941 | 0.5 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1