--- library_name: transformers license: other base_model: facebook/mask2former-swin-tiny-ade-semantic tags: - generated_from_trainer model-index: - name: mask2former results: [] --- # mask2former This model is a fine-tuned version of [facebook/mask2former-swin-tiny-ade-semantic](https://huggingface.co/facebook/mask2former-swin-tiny-ade-semantic) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 29.1112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 50.7018 | 0.1408 | 50 | 44.2435 | | 40.5877 | 0.2817 | 100 | 39.6465 | | 37.4102 | 0.4225 | 150 | 37.2471 | | 35.7502 | 0.5634 | 200 | 36.3455 | | 34.7067 | 0.7042 | 250 | 34.8824 | | 34.0798 | 0.8451 | 300 | 34.8520 | | 33.3503 | 0.9859 | 350 | 33.7321 | | 32.3436 | 1.1268 | 400 | 33.1560 | | 32.3845 | 1.2676 | 450 | 33.0411 | | 30.8809 | 1.4085 | 500 | 32.7852 | | 31.689 | 1.5493 | 550 | 31.9914 | | 31.036 | 1.6901 | 600 | 32.7297 | | 30.9795 | 1.8310 | 650 | 31.8848 | | 30.7918 | 1.9718 | 700 | 31.5285 | | 30.1432 | 2.1127 | 750 | 32.0634 | | 29.7082 | 2.2535 | 800 | 31.1849 | | 28.7869 | 2.3944 | 850 | 30.9022 | | 29.4227 | 2.5352 | 900 | 30.5902 | | 29.1865 | 2.6761 | 950 | 30.3818 | | 29.2715 | 2.8169 | 1000 | 30.9196 | | 29.1941 | 2.9577 | 1050 | 30.8163 | | 28.5256 | 3.0986 | 1100 | 30.4730 | | 28.0419 | 3.2394 | 1150 | 30.6531 | | 28.0538 | 3.3803 | 1200 | 30.0779 | | 27.9463 | 3.5211 | 1250 | 30.6114 | | 27.4152 | 3.6620 | 1300 | 30.5519 | | 27.7461 | 3.8028 | 1350 | 29.5641 | | 27.5604 | 3.9437 | 1400 | 30.1296 | | 27.381 | 4.0845 | 1450 | 30.5017 | | 26.3816 | 4.2254 | 1500 | 29.6898 | | 26.5218 | 4.3662 | 1550 | 29.9475 | | 26.9798 | 4.5070 | 1600 | 29.3323 | | 26.8186 | 4.6479 | 1650 | 29.5755 | | 27.5111 | 4.7887 | 1700 | 30.7945 | | 27.0839 | 4.9296 | 1750 | 29.4147 | | 26.6393 | 5.0704 | 1800 | 28.7983 | | 26.3564 | 5.2113 | 1850 | 29.2245 | | 25.6174 | 5.3521 | 1900 | 28.9337 | | 25.8777 | 5.4930 | 1950 | 29.4778 | | 25.6848 | 5.6338 | 2000 | 28.4992 | | 26.4625 | 5.7746 | 2050 | 29.6182 | | 26.8448 | 5.9155 | 2100 | 29.5377 | | 26.0681 | 6.0563 | 2150 | 29.2390 | | 25.628 | 6.1972 | 2200 | 29.1112 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3