--- license: apache-2.0 tags: - generated_from_keras_callback base_model: google/vit-base-patch16-224-in21k model-index: - name: vit_spectrogram results: [] --- # vit_spectrogram This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on a dataset containing images of Mel spectrogram belonging to the classes 'Male' and 'Female'. This model is still being fine tuned and tested. It achieves the following results on the evaluation set: - Train Loss: 0.2893 - Train Accuracy: 0.8757 - Train Top-3-accuracy: 1.0000 - Validation Loss: 0.8757 - Validation Accuracy: 0.9366 - Validation Top-3-accuracy: 1.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3032, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.18.0 - TensorFlow 2.4.0 - Datasets 2.0.0 - Tokenizers 0.11.6