--- license: apache-2.0 --- **Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf) **Code**: https://github.com/princeton-nlp/LLM-Shearing **Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B) ## Training information This is the instruction tuned version of [princeton-nlp/Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B). We trained the base model on 10,000 instruction-response pairs sampled from the ShareGPT dataset (first-turns only). We use the following prompt to perform instruction tuning. > You are a helpful assistant. Write a response that appropriately completes the request.\n\n### Input:\n{input}\n\n### Response: This model can be loaded through transformers.LlamaModelForCausalLM as follows: ``` from transformers import LlamaModelForCausalLM model = LlamaModelForCausalLM.from_pretrained("princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT") ``` ## Bibtex If you find our model useful, consider citing us with: ``` @article{xia2023sheared, title={Sheared llama: Accelerating language model pre-training via structured pruning}, author={Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi}, journal={arXiv preprint arXiv:2310.06694}, year={2023} } ```