pritamdeka commited on
Commit
06ce6e0
·
1 Parent(s): 2ae9a40

Initial Commit

Browse files
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - pritamdeka/cord-19-fulltext
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: pubmedbert-fulltext-cord19
11
+ results:
12
+ - task:
13
+ name: Masked Language Modeling
14
+ type: fill-mask
15
+ dataset:
16
+ name: pritamdeka/cord-19-fulltext
17
+ type: pritamdeka/cord-19-fulltext
18
+ args: fulltext
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.7175316733550737
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # pubmedbert-fulltext-cord19
29
+
30
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the pritamdeka/cord-19-fulltext dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 1.2667
33
+ - Accuracy: 0.7175
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 5e-05
53
+ - train_batch_size: 16
54
+ - eval_batch_size: 16
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - lr_scheduler_warmup_steps: 10000
59
+ - num_epochs: 3.0
60
+ - mixed_precision_training: Native AMP
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
66
+ | 1.7985 | 0.27 | 5000 | 1.2710 | 0.7176 |
67
+ | 1.7542 | 0.53 | 10000 | 1.3359 | 0.7070 |
68
+ | 1.7462 | 0.8 | 15000 | 1.3489 | 0.7034 |
69
+ | 1.8371 | 1.07 | 20000 | 1.4361 | 0.6891 |
70
+ | 1.7102 | 1.33 | 25000 | 1.3502 | 0.7039 |
71
+ | 1.6596 | 1.6 | 30000 | 1.3341 | 0.7065 |
72
+ | 1.6265 | 1.87 | 35000 | 1.3228 | 0.7087 |
73
+ | 1.605 | 2.13 | 40000 | 1.3079 | 0.7099 |
74
+ | 1.5731 | 2.4 | 45000 | 1.2986 | 0.7121 |
75
+ | 1.5602 | 2.67 | 50000 | 1.2929 | 0.7136 |
76
+ | 1.5447 | 2.93 | 55000 | 1.2875 | 0.7143 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.17.0.dev0
82
+ - Pytorch 1.10.0+cu111
83
+ - Datasets 1.18.3
84
+ - Tokenizers 0.11.0
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.7175316733550737,
4
+ "eval_loss": 1.2667090892791748,
5
+ "eval_runtime": 290.3233,
6
+ "eval_samples": 25000,
7
+ "eval_samples_per_second": 86.111,
8
+ "eval_steps_per_second": 5.384,
9
+ "perplexity": 3.549153375531065,
10
+ "train_loss": 1.6709515473090277,
11
+ "train_runtime": 32029.5992,
12
+ "train_samples": 300000,
13
+ "train_samples_per_second": 28.099,
14
+ "train_steps_per_second": 1.756
15
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
3
+ "architectures": [
4
+ "BertForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.17.0.dev0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.7175316733550737,
4
+ "eval_loss": 1.2667090892791748,
5
+ "eval_runtime": 290.3233,
6
+ "eval_samples": 25000,
7
+ "eval_samples_per_second": 86.111,
8
+ "eval_steps_per_second": 5.384,
9
+ "perplexity": 3.549153375531065
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9de4e6b38a338718fe5b5c173b47a07e06c3c23bb05d3f1dd34136e0592278e5
3
+ size 438141995
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 1.6709515473090277,
4
+ "train_runtime": 32029.5992,
5
+ "train_samples": 300000,
6
+ "train_samples_per_second": 28.099,
7
+ "train_steps_per_second": 1.756
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2710014581680298,
3
+ "best_model_checkpoint": "/content/pubmedbert-fulltext-cord19/checkpoint-5000",
4
+ "epoch": 3.0,
5
+ "global_step": 56250,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.27,
12
+ "learning_rate": 2.4970000000000003e-05,
13
+ "loss": 1.7985,
14
+ "step": 5000
15
+ },
16
+ {
17
+ "epoch": 0.27,
18
+ "eval_accuracy": 0.7176016320015706,
19
+ "eval_loss": 1.2710014581680298,
20
+ "eval_runtime": 289.9232,
21
+ "eval_samples_per_second": 86.23,
22
+ "eval_steps_per_second": 5.391,
23
+ "step": 5000
24
+ },
25
+ {
26
+ "epoch": 0.53,
27
+ "learning_rate": 4.9965e-05,
28
+ "loss": 1.7542,
29
+ "step": 10000
30
+ },
31
+ {
32
+ "epoch": 0.53,
33
+ "eval_accuracy": 0.7069832712721614,
34
+ "eval_loss": 1.3359251022338867,
35
+ "eval_runtime": 290.2058,
36
+ "eval_samples_per_second": 86.146,
37
+ "eval_steps_per_second": 5.386,
38
+ "step": 10000
39
+ },
40
+ {
41
+ "epoch": 0.8,
42
+ "learning_rate": 4.460432432432432e-05,
43
+ "loss": 1.7462,
44
+ "step": 15000
45
+ },
46
+ {
47
+ "epoch": 0.8,
48
+ "eval_accuracy": 0.7034289815931059,
49
+ "eval_loss": 1.3488777875900269,
50
+ "eval_runtime": 290.0812,
51
+ "eval_samples_per_second": 86.183,
52
+ "eval_steps_per_second": 5.388,
53
+ "step": 15000
54
+ },
55
+ {
56
+ "epoch": 1.07,
57
+ "learning_rate": 3.9202162162162166e-05,
58
+ "loss": 1.8371,
59
+ "step": 20000
60
+ },
61
+ {
62
+ "epoch": 1.07,
63
+ "eval_accuracy": 0.6891450706903661,
64
+ "eval_loss": 1.436103105545044,
65
+ "eval_runtime": 289.9321,
66
+ "eval_samples_per_second": 86.227,
67
+ "eval_steps_per_second": 5.391,
68
+ "step": 20000
69
+ },
70
+ {
71
+ "epoch": 1.33,
72
+ "learning_rate": 3.379675675675676e-05,
73
+ "loss": 1.7102,
74
+ "step": 25000
75
+ },
76
+ {
77
+ "epoch": 1.33,
78
+ "eval_accuracy": 0.7039453286069087,
79
+ "eval_loss": 1.3501886129379272,
80
+ "eval_runtime": 289.995,
81
+ "eval_samples_per_second": 86.208,
82
+ "eval_steps_per_second": 5.39,
83
+ "step": 25000
84
+ },
85
+ {
86
+ "epoch": 1.6,
87
+ "learning_rate": 2.8393513513513515e-05,
88
+ "loss": 1.6596,
89
+ "step": 30000
90
+ },
91
+ {
92
+ "epoch": 1.6,
93
+ "eval_accuracy": 0.70652987764824,
94
+ "eval_loss": 1.334069013595581,
95
+ "eval_runtime": 290.2224,
96
+ "eval_samples_per_second": 86.141,
97
+ "eval_steps_per_second": 5.386,
98
+ "step": 30000
99
+ },
100
+ {
101
+ "epoch": 1.87,
102
+ "learning_rate": 2.2990270270270274e-05,
103
+ "loss": 1.6265,
104
+ "step": 35000
105
+ },
106
+ {
107
+ "epoch": 1.87,
108
+ "eval_accuracy": 0.708723656830319,
109
+ "eval_loss": 1.322791576385498,
110
+ "eval_runtime": 291.0022,
111
+ "eval_samples_per_second": 85.91,
112
+ "eval_steps_per_second": 5.371,
113
+ "step": 35000
114
+ },
115
+ {
116
+ "epoch": 2.13,
117
+ "learning_rate": 1.7584864864864868e-05,
118
+ "loss": 1.605,
119
+ "step": 40000
120
+ },
121
+ {
122
+ "epoch": 2.13,
123
+ "eval_accuracy": 0.7099296658889697,
124
+ "eval_loss": 1.307939052581787,
125
+ "eval_runtime": 290.1974,
126
+ "eval_samples_per_second": 86.148,
127
+ "eval_steps_per_second": 5.386,
128
+ "step": 40000
129
+ },
130
+ {
131
+ "epoch": 2.4,
132
+ "learning_rate": 1.2181621621621623e-05,
133
+ "loss": 1.5731,
134
+ "step": 45000
135
+ },
136
+ {
137
+ "epoch": 2.4,
138
+ "eval_accuracy": 0.7121370440536863,
139
+ "eval_loss": 1.2985501289367676,
140
+ "eval_runtime": 290.9835,
141
+ "eval_samples_per_second": 85.916,
142
+ "eval_steps_per_second": 5.371,
143
+ "step": 45000
144
+ },
145
+ {
146
+ "epoch": 2.67,
147
+ "learning_rate": 6.778378378378379e-06,
148
+ "loss": 1.5602,
149
+ "step": 50000
150
+ },
151
+ {
152
+ "epoch": 2.67,
153
+ "eval_accuracy": 0.7135782251340592,
154
+ "eval_loss": 1.2928680181503296,
155
+ "eval_runtime": 290.2984,
156
+ "eval_samples_per_second": 86.118,
157
+ "eval_steps_per_second": 5.384,
158
+ "step": 50000
159
+ },
160
+ {
161
+ "epoch": 2.93,
162
+ "learning_rate": 1.3762162162162162e-06,
163
+ "loss": 1.5447,
164
+ "step": 55000
165
+ },
166
+ {
167
+ "epoch": 2.93,
168
+ "eval_accuracy": 0.7142735090199965,
169
+ "eval_loss": 1.2874841690063477,
170
+ "eval_runtime": 290.4326,
171
+ "eval_samples_per_second": 86.078,
172
+ "eval_steps_per_second": 5.382,
173
+ "step": 55000
174
+ },
175
+ {
176
+ "epoch": 3.0,
177
+ "step": 56250,
178
+ "total_flos": 1.156661775e+17,
179
+ "train_loss": 1.6709515473090277,
180
+ "train_runtime": 32029.5992,
181
+ "train_samples_per_second": 28.099,
182
+ "train_steps_per_second": 1.756
183
+ }
184
+ ],
185
+ "max_steps": 56250,
186
+ "num_train_epochs": 3,
187
+ "total_flos": 1.156661775e+17,
188
+ "trial_name": null,
189
+ "trial_params": null
190
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32791723132d9fc18f04a12e5de8e21d799f30360d75d11d4180d5cf9a33a815
3
+ size 3055
vocab.txt ADDED
The diff for this file is too large to render. See raw diff