--- license: mit tags: - generated_from_trainer datasets: - pritamdeka/cord-19-fulltext metrics: - accuracy base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext model-index: - name: pubmedbert-fulltext-cord19 results: - task: type: fill-mask name: Masked Language Modeling dataset: name: pritamdeka/cord-19-fulltext type: pritamdeka/cord-19-fulltext args: fulltext metrics: - type: accuracy value: 0.7175316733550737 name: Accuracy --- # pubmedbert-fulltext-cord19 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the pritamdeka/cord-19-fulltext dataset. It achieves the following results on the evaluation set: - Loss: 1.2667 - Accuracy: 0.7175 ## Model description The model has been trained using a maximum train sample size of 300K and evaluation size of 25K due to GPU limitations ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7985 | 0.27 | 5000 | 1.2710 | 0.7176 | | 1.7542 | 0.53 | 10000 | 1.3359 | 0.7070 | | 1.7462 | 0.8 | 15000 | 1.3489 | 0.7034 | | 1.8371 | 1.07 | 20000 | 1.4361 | 0.6891 | | 1.7102 | 1.33 | 25000 | 1.3502 | 0.7039 | | 1.6596 | 1.6 | 30000 | 1.3341 | 0.7065 | | 1.6265 | 1.87 | 35000 | 1.3228 | 0.7087 | | 1.605 | 2.13 | 40000 | 1.3079 | 0.7099 | | 1.5731 | 2.4 | 45000 | 1.2986 | 0.7121 | | 1.5602 | 2.67 | 50000 | 1.2929 | 0.7136 | | 1.5447 | 2.93 | 55000 | 1.2875 | 0.7143 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0