File size: 8,927 Bytes
2dd362e
 
e19b228
 
 
 
 
 
 
 
1795ffe
d3f9c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd362e
 
167d2a6
 
 
ab1a1d7
167d2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f9c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
license: llama3.1
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- phi-4
- LlamaForCausalLM
- xElite
- 14B
model-index:
- name: Blaze-14B-xElite
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 3.63
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 51.57
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 35.88
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.24
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.68
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 45.68
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite
      name: Open LLM Leaderboard
---

![xlite.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/SW_hpO9bn8vtkf5F1NteF.gif)


# **Blaze-14B-xElite**

[Blaze-14B-xElite finetuned] is a state-of-the-art open model built on the LLaMA-based model architecture. It has been fine-tuned using a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach is to ensure that small yet capable models are trained with high-quality data focused on advanced reasoning.

Blaze-14B-xElite has adopted a robust safety post-training approach. This approach leverages a variety of both open-source and in-house generated synthetic datasets. The overall technique employed to achieve safety alignment combines SFT (Supervised Fine-Tuning) and iterative DPO (Direct Preference Optimization), including publicly available datasets focusing on helpfulness and harmlessness as well as various questions and answers targeted at multiple safety categories.

# **Dataset Info**

Blaze-14B-xElite is fine-tuned on a synthetic dataset curated through a pipeline explicitly built for this purpose. The data is primarily based on the Chain of Thought (CoT) or Chain of Continuous Flow methodologies. This approach ensures that the dataset is rich in reasoning, problem-solving, and step-by-step breakdowns of complex tasks. The model is specifically designed to excel in reasoning, mathematics, and breaking down problems into logical, manageable steps.

# **Run with Transformers**

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("prithivMLmods/Blaze-14B-xElite")
model = AutoModelForCausalLM.from_pretrained(
    "prithivMLmods/Blaze-14B-xElite",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))
```

You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
```python
messages = [
    {"role": "user", "content": "Write me a poem about Machine Learning."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))
```

# **Intended Use**

The Blaze-14B-xElite model is designed for a wide range of applications, particularly those requiring advanced reasoning, high-quality text generation, and multilingual capabilities. Below are some of the intended use cases:

1. **Complex Reasoning Tasks**:  
   - Solving intricate problems in mathematics, logic, and science.  
   - Assisting in academic research by providing detailed explanations and summaries.  

2. **Multilingual Applications**:  
   - Translating text across multiple languages while preserving context and nuance.  
   - Generating content in various languages for global audiences.  

3. **Content Creation**:  
   - Assisting writers, marketers, and creators with high-quality text generation.  
   - Generating creative ideas, stories, and technical documentation.  

4. **Educational Tools**:  
   - Providing explanations, tutoring, and Q&A support for students and educators.  
   - Generating practice questions and answers for learning purposes.  

5. **Customer Support**:  
   - Automating responses to customer queries with accurate and helpful information.  
   - Handling complex customer service scenarios with advanced reasoning.  

6. **Safety-Critical Applications**:  
   - Ensuring responses are aligned with safety guidelines, making it suitable for sensitive domains.  
   - Providing harmlessness-focused interactions in public-facing applications.
     
# **Limitations**

While Blaze-14B-xElite is a powerful and versatile model, it has certain limitations that users should be aware of:

1. **Bias and Fairness**:  
   - Despite rigorous training and safety alignment, the model may still exhibit biases present in the training data. Users should critically evaluate outputs, especially in sensitive contexts.  

2. **Contextual Understanding**:  
   - The model may occasionally misinterpret complex or ambiguous prompts, leading to inaccurate or irrelevant responses.  

3. **Real-Time Knowledge**:  
   - The model's knowledge is limited to the data it was trained on and does not include real-time or post-training updates. It may not be aware of recent events or developments.  

4. **Safety and Harmlessness**:  
   - While extensive efforts have been made to align the model with safety guidelines, it may still generate outputs that are inappropriate or harmful in certain contexts. Continuous monitoring and human oversight are recommended.  

5. **Resource Requirements**:  
   - Running the model efficiently may require significant computational resources, especially for large-scale or real-time applications.  

6. **Ethical Considerations**:  
   - The model should not be used for malicious purposes, such as generating harmful content, misinformation, or spam. Users are responsible for ensuring ethical use.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Blaze-14B-xElite-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FBlaze-14B-xElite&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    28.95|
|IFEval (0-Shot)    |     3.63|
|BBH (3-Shot)       |    51.57|
|MATH Lvl 5 (4-Shot)|    35.88|
|GPQA (0-shot)      |    19.24|
|MuSR (0-shot)      |    17.68|
|MMLU-PRO (5-shot)  |    45.68|