File size: 5,690 Bytes
43bcb30
 
 
 
 
 
 
 
 
 
 
 
 
df16ea5
43bcb30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df16ea5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: apache-2.0
pipeline_tag: image-classification
library_name: transformers
tags:
- deep-fake
- ViT
- detection
- Image
- transformers-4.49.0.dev0
- precision-92.12
- v2
base_model:
- prithivMLmods/Deep-Fake-Detector-v2-Model
---

![fake q.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/PVkTbLOEBr-qNkTws3UsD.gif)

# **Deep-Fake-Detector-v2-Model**

# **Overview**

The **Deep-Fake-Detector-v2-Model** is a state-of-the-art deep learning model designed to detect deepfake images. It leverages the **Vision Transformer (ViT)** architecture, specifically the `google/vit-base-patch16-224-in21k` model, fine-tuned on a dataset of real and deepfake images. The model is trained to classify images as either "Realism" or "Deepfake" with high accuracy, making it a powerful tool for detecting manipulated media.

```
Classification report:

              precision    recall  f1-score   support

     Realism     0.9683    0.8708    0.9170     28001
    Deepfake     0.8826    0.9715    0.9249     28000

    accuracy                         0.9212     56001
   macro avg     0.9255    0.9212    0.9210     56001
weighted avg     0.9255    0.9212    0.9210     56001
```

**Confusion Matrix**:
  ```
  [[True Positives, False Negatives],
   [False Positives, True Negatives]]
  ```
  
![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/VLX0QDcKkSLIJ9c5LX-wt.png)

**<span style="color:red;">Update :</span>** The previous model checkpoint was obtained using a smaller classification dataset. Although it performed well in evaluation scores, its real-time performance was average due to limited variations in the training set. The new update includes a larger dataset to improve the detection of fake images.

| Repository | Link |
|------------|------|
| Deep Fake Detector v2 Model | [GitHub Repository](https://github.com/PRITHIVSAKTHIUR/Deep-Fake-Detector-Model) |

# **Key Features**
- **Architecture**: Vision Transformer (ViT) - `google/vit-base-patch16-224-in21k`.
- **Input**: RGB images resized to 224x224 pixels.
- **Output**: Binary classification ("Realism" or "Deepfake").
- **Training Dataset**: A curated dataset of real and deepfake images.
- **Fine-Tuning**: The model is fine-tuned using Hugging Face's `Trainer` API with advanced data augmentation techniques.
- **Performance**: Achieves high accuracy and F1 score on validation and test datasets.

# **Model Architecture**
The model is based on the **Vision Transformer (ViT)**, which treats images as sequences of patches and applies a transformer encoder to learn spatial relationships. Key components include:
- **Patch Embedding**: Divides the input image into fixed-size patches (16x16 pixels).
- **Transformer Encoder**: Processes patch embeddings using multi-head self-attention mechanisms.
- **Classification Head**: A fully connected layer for binary classification.

# **Training Details**
- **Optimizer**: AdamW with a learning rate of `1e-6`.
- **Batch Size**: 32 for training, 8 for evaluation.
- **Epochs**: 2.
- **Data Augmentation**:
  - Random rotation (±90 degrees).
  - Random sharpness adjustment.
  - Random resizing and cropping.
- **Loss Function**: Cross-Entropy Loss.
- **Evaluation Metrics**: Accuracy, F1 Score, and Confusion Matrix.

# **Inference with Hugging Face Pipeline**
```python
from transformers import pipeline

# Load the model
pipe = pipeline('image-classification', model="prithivMLmods/Deep-Fake-Detector-v2-Model", device=0)

# Predict on an image
result = pipe("path_to_image.jpg")
print(result)
```

# **Inference with PyTorch**
```python
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch

# Load the model and processor
model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-v2-Model")
processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-v2-Model")

# Load and preprocess the image
image = Image.open("path_to_image.jpg").convert("RGB")
inputs = processor(images=image, return_tensors="pt")

# Perform inference
with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class = torch.argmax(logits, dim=1).item()

# Map class index to label
label = model.config.id2label[predicted_class]
print(f"Predicted Label: {label}")
```
# **Dataset**
The model is fine-tuned on the dataset, which contains:
- **Real Images**: Authentic images of human faces.
- **Fake Images**: Deepfake images generated using advanced AI techniques.

# **Limitations**
The model is trained on a specific dataset and may not generalize well to other deepfake datasets or domains.
- Performance may degrade on low-resolution or heavily compressed images.
- The model is designed for image classification and does not detect deepfake videos directly.

# **Ethical Considerations**

**Misuse**: This model should not be used for malicious purposes, such as creating or spreading deepfakes.
**Bias**: The model may inherit biases from the training dataset. Care should be taken to ensure fairness and inclusivity.
**Transparency**: Users should be informed when deepfake detection tools are used to analyze their content.

# **Future Work**
- Extend the model to detect deepfake videos.
- Improve generalization by training on larger and more diverse datasets.
- Incorporate explainability techniques to provide insights into model predictions.

# **Citation**

```bibtex
@misc{Deep-Fake-Detector-v2-Model,
  author = {prithivMLmods},
  title = {Deep-Fake-Detector-v2-Model},
  initial = {21 Mar 2024},
  second_updated = {31 Jan 2025},
  latest_updated = {02 Feb 2025}
}