File size: 14,808 Bytes
d7da47f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "-b4-SW1aGOcF"
},
"source": [
"# **Open R1 Reasoning Exp**\n",
"\n",
"Qwen2VLForConditionalGeneration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oDmd1ZObGSel"
},
"outputs": [],
"source": [
"!pip install gradio spaces transformers accelerate numpy requests torch torchvision qwen-vl-utils av ipython reportlab fpdf python-docx pillow huggingface_hub"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ovBSsRFhGbs2"
},
"outputs": [],
"source": [
"# Authenticate with Hugging Face\n",
"from huggingface_hub import login\n",
"\n",
"# Log in to Hugging Face using the provided token\n",
"hf_token = '---xxxxx---'\n",
"login(hf_token)\n",
"\n",
"#Demo\n",
"import gradio as gr\n",
"import spaces\n",
"from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer\n",
"from qwen_vl_utils import process_vision_info\n",
"import torch\n",
"from PIL import Image\n",
"import os\n",
"import uuid\n",
"import io\n",
"from threading import Thread\n",
"from reportlab.lib.pagesizes import A4\n",
"from reportlab.lib.styles import getSampleStyleSheet\n",
"from reportlab.lib import colors\n",
"from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer\n",
"from reportlab.lib.units import inch\n",
"from reportlab.pdfbase import pdfmetrics\n",
"from reportlab.pdfbase.ttfonts import TTFont\n",
"import docx\n",
"from docx.enum.text import WD_ALIGN_PARAGRAPH\n",
"\n",
"# Define model options\n",
"MODEL_OPTIONS = {\n",
" \"OpenR1\": \"prithivMLmods/Open-R1-Mini-Experimental\",\n",
"}\n",
"\n",
"# Preload models and processors into CUDA\n",
"models = {}\n",
"processors = {}\n",
"for name, model_id in MODEL_OPTIONS.items():\n",
" print(f\"Loading {name}...\")\n",
" models[name] = Qwen2VLForConditionalGeneration.from_pretrained(\n",
" model_id,\n",
" trust_remote_code=True,\n",
" torch_dtype=torch.float16\n",
" ).to(\"cuda\").eval()\n",
" processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)\n",
"\n",
"image_extensions = Image.registered_extensions()\n",
"\n",
"def identify_and_save_blob(blob_path):\n",
" \"\"\"Identifies if the blob is an image and saves it.\"\"\"\n",
" try:\n",
" with open(blob_path, 'rb') as file:\n",
" blob_content = file.read()\n",
" try:\n",
" Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image\n",
" extension = \".png\" # Default to PNG for saving\n",
" media_type = \"image\"\n",
" except (IOError, SyntaxError):\n",
" raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n",
"\n",
" filename = f\"temp_{uuid.uuid4()}_media{extension}\"\n",
" with open(filename, \"wb\") as f:\n",
" f.write(blob_content)\n",
"\n",
" return filename, media_type\n",
"\n",
" except FileNotFoundError:\n",
" raise ValueError(f\"The file {blob_path} was not found.\")\n",
" except Exception as e:\n",
" raise ValueError(f\"An error occurred while processing the file: {e}\")\n",
"\n",
"@spaces.GPU\n",
"def qwen_inference(model_name, media_input, text_input=None):\n",
" \"\"\"Handles inference for the selected model.\"\"\"\n",
" model = models[model_name]\n",
" processor = processors[model_name]\n",
"\n",
" if isinstance(media_input, str):\n",
" media_path = media_input\n",
" if media_path.endswith(tuple([i for i in image_extensions.keys()])):\n",
" media_type = \"image\"\n",
" else:\n",
" try:\n",
" media_path, media_type = identify_and_save_blob(media_input)\n",
" except Exception as e:\n",
" raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n",
"\n",
" messages = [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": media_type,\n",
" media_type: media_path\n",
" },\n",
" {\"type\": \"text\", \"text\": text_input},\n",
" ],\n",
" }\n",
" ]\n",
"\n",
" text = processor.apply_chat_template(\n",
" messages, tokenize=False, add_generation_prompt=True\n",
" )\n",
" image_inputs, _ = process_vision_info(messages)\n",
" inputs = processor(\n",
" text=[text],\n",
" images=image_inputs,\n",
" padding=True,\n",
" return_tensors=\"pt\",\n",
" ).to(\"cuda\")\n",
"\n",
" streamer = TextIteratorStreamer(\n",
" processor.tokenizer, skip_prompt=True, skip_special_tokens=True\n",
" )\n",
" generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)\n",
"\n",
" thread = Thread(target=model.generate, kwargs=generation_kwargs)\n",
" thread.start()\n",
"\n",
" buffer = \"\"\n",
" for new_text in streamer:\n",
" buffer += new_text\n",
" # Remove <|im_end|> or similar tokens from the output\n",
" buffer = buffer.replace(\"<|im_end|>\", \"\")\n",
" yield buffer\n",
"\n",
"def format_plain_text(output_text):\n",
" \"\"\"Formats the output text as plain text without LaTeX delimiters.\"\"\"\n",
" # Remove LaTeX delimiters and convert to plain text\n",
" plain_text = output_text.replace(\"\\\\(\", \"\").replace(\"\\\\)\", \"\").replace(\"\\\\[\", \"\").replace(\"\\\\]\", \"\")\n",
" return plain_text\n",
"\n",
"def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size):\n",
" \"\"\"Generates a document with the input image and plain text output.\"\"\"\n",
" plain_text = format_plain_text(output_text)\n",
" if file_format == \"pdf\":\n",
" return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n",
" elif file_format == \"docx\":\n",
" return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n",
"\n",
"def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n",
" \"\"\"Generates a PDF document.\"\"\"\n",
" filename = f\"output_{uuid.uuid4()}.pdf\"\n",
" doc = SimpleDocTemplate(\n",
" filename,\n",
" pagesize=A4,\n",
" rightMargin=inch,\n",
" leftMargin=inch,\n",
" topMargin=inch,\n",
" bottomMargin=inch\n",
" )\n",
" styles = getSampleStyleSheet()\n",
" styles[\"Normal\"].fontSize = int(font_size)\n",
" styles[\"Normal\"].leading = int(font_size) * line_spacing\n",
" styles[\"Normal\"].alignment = {\n",
" \"Left\": 0,\n",
" \"Center\": 1,\n",
" \"Right\": 2,\n",
" \"Justified\": 4\n",
" }[alignment]\n",
"\n",
" story = []\n",
"\n",
" # Add image with size adjustment\n",
" image_sizes = {\n",
" \"Small\": (200, 200),\n",
" \"Medium\": (400, 400),\n",
" \"Large\": (600, 600)\n",
" }\n",
" img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])\n",
" story.append(img)\n",
" story.append(Spacer(1, 12))\n",
"\n",
" # Add plain text output\n",
" text = Paragraph(plain_text, styles[\"Normal\"])\n",
" story.append(text)\n",
"\n",
" doc.build(story)\n",
" return filename\n",
"\n",
"def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n",
" \"\"\"Generates a DOCX document.\"\"\"\n",
" filename = f\"output_{uuid.uuid4()}.docx\"\n",
" doc = docx.Document()\n",
"\n",
" # Add image with size adjustment\n",
" image_sizes = {\n",
" \"Small\": docx.shared.Inches(2),\n",
" \"Medium\": docx.shared.Inches(4),\n",
" \"Large\": docx.shared.Inches(6)\n",
" }\n",
" doc.add_picture(media_path, width=image_sizes[image_size])\n",
" doc.add_paragraph()\n",
"\n",
" # Add plain text output\n",
" paragraph = doc.add_paragraph()\n",
" paragraph.paragraph_format.line_spacing = line_spacing\n",
" paragraph.paragraph_format.alignment = {\n",
" \"Left\": WD_ALIGN_PARAGRAPH.LEFT,\n",
" \"Center\": WD_ALIGN_PARAGRAPH.CENTER,\n",
" \"Right\": WD_ALIGN_PARAGRAPH.RIGHT,\n",
" \"Justified\": WD_ALIGN_PARAGRAPH.JUSTIFY\n",
" }[alignment]\n",
" run = paragraph.add_run(plain_text)\n",
" run.font.size = docx.shared.Pt(int(font_size))\n",
"\n",
" doc.save(filename)\n",
" return filename\n",
"\n",
"# CSS for output styling\n",
"css = \"\"\"\n",
" #output {\n",
" height: 500px;\n",
" overflow: auto;\n",
" border: 1px solid #ccc;\n",
" }\n",
".submit-btn {\n",
" background-color: #cf3434 !important;\n",
" color: white !important;\n",
"}\n",
".submit-btn:hover {\n",
" background-color: #ff2323 !important;\n",
"}\n",
".download-btn {\n",
" background-color: #35a6d6 !important;\n",
" color: white !important;\n",
"}\n",
".download-btn:hover {\n",
" background-color: #22bcff !important;\n",
"}\n",
"\"\"\"\n",
"\n",
"# Gradio app setup\n",
"with gr.Blocks(css=css) as demo:\n",
" gr.Markdown(\"# Open R1 Reasoning Exp\")\n",
"\n",
" with gr.Tab(label=\"Image Input\"):\n",
"\n",
" with gr.Row():\n",
" with gr.Column():\n",
" model_choice = gr.Dropdown(\n",
" label=\"Model Selection\",\n",
" choices=list(MODEL_OPTIONS.keys()),\n",
" value=\"OpenR1\"\n",
" )\n",
" input_media = gr.File(\n",
" label=\"Upload Image\", type=\"filepath\"\n",
" )\n",
" text_input = gr.Textbox(label=\"Question\", placeholder=\"Ask a question about the image...\")\n",
" submit_btn = gr.Button(value=\"Submit\", elem_classes=\"submit-btn\")\n",
"\n",
" with gr.Column():\n",
" output_text = gr.Textbox(label=\"Output Text\", lines=10)\n",
" plain_text_output = gr.Textbox(label=\"Standardized Plain Text\", lines=10)\n",
"\n",
" submit_btn.click(\n",
" qwen_inference, [model_choice, input_media, text_input], [output_text]\n",
" ).then(\n",
" lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]\n",
" )\n",
"\n",
" # Add examples directly usable by clicking\n",
" with gr.Row():\n",
" with gr.Column():\n",
" line_spacing = gr.Dropdown(\n",
" choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],\n",
" value=1.5,\n",
" label=\"Line Spacing\"\n",
" )\n",
" font_size = gr.Dropdown(\n",
" choices=[\"8\", \"10\", \"12\", \"14\", \"16\", \"18\", \"20\", \"22\", \"24\"],\n",
" value=\"18\",\n",
" label=\"Font Size\"\n",
" )\n",
" alignment = gr.Dropdown(\n",
" choices=[\"Left\", \"Center\", \"Right\", \"Justified\"],\n",
" value=\"Justified\",\n",
" label=\"Text Alignment\"\n",
" )\n",
" image_size = gr.Dropdown(\n",
" choices=[\"Small\", \"Medium\", \"Large\"],\n",
" value=\"Small\",\n",
" label=\"Image Size\"\n",
" )\n",
" file_format = gr.Radio([\"pdf\", \"docx\"], label=\"File Format\", value=\"pdf\")\n",
" get_document_btn = gr.Button(value=\"Get Document\", elem_classes=\"download-btn\")\n",
"\n",
" get_document_btn.click(\n",
" generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label=\"Download Document\")\n",
" )\n",
"\n",
"demo.launch(debug=True)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|