File size: 7,377 Bytes
12ac6ab
 
 
 
 
cf11ee5
12ac6ab
 
 
 
 
18fa5a1
c8c31dc
 
 
 
c3acf65
3ef28c8
821a177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7b4ea6
 
 
 
f9638b7
d7b4ea6
f9638b7
d7b4ea6
f2ea462
d7b4ea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2ea462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821a177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- LCoT
- Qwen
- v2
datasets:
- PowerInfer/QWQ-LONGCOT-500K
- AI-MO/NuminaMath-CoT
- prithivMLmods/Math-Solve
- amphora/QwQ-LongCoT-130K
- prithivMLmods/Deepthink-Reasoning
model-index:
- name: QwQ-LCoT2-7B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 55.76
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 34.37
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 22.21
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.38
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.75
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 37.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
      name: Open LLM Leaderboard
---



# **QwQ-LCoT2-7B-Instruct**

The *QwQ-LCoT2-7B-Instruct* is a fine-tuned language model designed for advanced reasoning and instruction-following tasks. It leverages the Qwen2.5-7B base model and has been fine-tuned on the chain of thought reasoning datasets, focusing on chain-of-thought (CoT) reasoning for problems. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.

# **Quickstart with Transformers**

Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/QwQ-LCoT2-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r in strawberry."
messages = [
    {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

# **Intended Use**  

The QwQ-LCoT2-7B-Instruct model is designed for advanced reasoning and instruction-following tasks, with specific applications including:  

1. **Instruction Following**: Providing detailed and step-by-step guidance for a wide range of user queries.
2. **Logical Reasoning**: Solving problems requiring multi-step thought processes, such as math problems or complex logic-based scenarios.
3. **Text Generation**: Crafting coherent, contextually relevant, and well-structured text in response to prompts.
4. **Problem-Solving**: Analyzing and addressing tasks that require chain-of-thought (CoT) reasoning, making it ideal for education, tutoring, and technical support.
5. **Knowledge Enhancement**: Leveraging reasoning datasets to offer deeper insights and explanations for a wide variety of topics.

# **Limitations**  

1. **Data Bias**: As the model is fine-tuned on specific datasets, its outputs may reflect inherent biases from the training data.
2. **Context Limitation**: Performance may degrade for tasks requiring knowledge or reasoning that significantly exceeds the model's pretraining or fine-tuning context.
3. **Complexity Ceiling**: While optimized for multi-step reasoning, exceedingly complex or abstract problems may result in incomplete or incorrect outputs.
4. **Dependency on Prompt Quality**: The quality and specificity of the user prompt heavily influence the model's responses.
5. **Non-Factual Outputs**: Despite being fine-tuned for reasoning, the model can still generate hallucinated or factually inaccurate content, particularly for niche or unverified topics.
6. **Computational Requirements**: Running the model effectively requires significant computational resources, particularly when generating long sequences or handling high-concurrency workloads.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__QwQ-LCoT2-7B-Instruct-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FQwQ-LCoT2-7B-Instruct&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    28.60|
|IFEval (0-Shot)    |    55.76|
|BBH (3-Shot)       |    34.37|
|MATH Lvl 5 (4-Shot)|    22.21|
|GPQA (0-shot)      |     6.38|
|MuSR (0-shot)      |    15.75|
|MMLU-PRO (5-shot)  |    37.13|