--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: star-trek-tng-script-generator results: [] datasets: - progs2002/star-trek-tng-scripts language: - en pipeline_tag: text-generation widget: - text: "PICARD: Make it so!\nRIKER: Captain! That ship is hailing us." --- # data cleaning and training code https://github.com/progs2002/StarTrekTNG-ScriptGenerator # star-trek-tng-script-generator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.1502 | 0.13 | 500 | 3.0233 | | 3.0538 | 0.26 | 1000 | 2.9728 | | 2.9951 | 0.38 | 1500 | 2.9437 | | 2.9891 | 0.51 | 2000 | 2.9125 | | 2.9289 | 0.64 | 2500 | 2.9159 | | 2.9091 | 0.77 | 3000 | 2.9008 | | 2.8916 | 0.89 | 3500 | 2.8752 | | 2.8122 | 1.02 | 4000 | 2.8881 | | 2.5224 | 1.15 | 4500 | 2.8896 | | 2.5284 | 1.28 | 5000 | 2.8667 | | 2.5191 | 1.4 | 5500 | 2.8599 | | 2.5119 | 1.53 | 6000 | 2.8488 | | 2.4808 | 1.66 | 6500 | 2.8296 | | 2.4601 | 1.79 | 7000 | 2.8081 | | 2.4331 | 1.91 | 7500 | 2.7993 | | 2.3716 | 2.04 | 8000 | 2.8518 | | 2.1528 | 2.17 | 8500 | 2.8634 | | 2.1276 | 2.3 | 9000 | 2.8617 | | 2.1329 | 2.43 | 9500 | 2.8489 | | 2.1135 | 2.55 | 10000 | 2.8446 | | 2.1259 | 2.68 | 10500 | 2.8461 | | 2.1142 | 2.81 | 11000 | 2.8472 | | 2.1071 | 2.94 | 11500 | 2.8459 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0