Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,247 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- es
|
5 |
+
- ca
|
6 |
+
licence:
|
7 |
+
- apache-2.0
|
8 |
+
tags:
|
9 |
+
- cabloom
|
10 |
+
- bloom
|
11 |
+
- spanish
|
12 |
+
- catalan
|
13 |
+
pipeline_tag: text-generation
|
14 |
+
widget:
|
15 |
+
- text: |-
|
16 |
+
Respon a la pregunta següent.
|
17 |
+
Pregunta: "Quina és la capital de Suècia?"
|
18 |
+
Resposta: "La capital de Suècia és Estocolm."
|
19 |
+
----
|
20 |
+
Respon a la pregunta següent.
|
21 |
+
Pregunta: "Quina beguda es consumeix als matins per despertar-se?"
|
22 |
+
Resposta: "La majoria de gent consumeix cafè per despertar-se."
|
23 |
+
----
|
24 |
+
Respon a la pregunta següent.
|
25 |
+
Pregunta: "Explica com funciona un motor de combustió"
|
26 |
+
Resposta:
|
27 |
+
example_title: Pregunta-Resposta
|
28 |
+
- text: |-
|
29 |
+
Extrae las entidades nombradas del siguiente texto:
|
30 |
+
Texto: "Me llamo Wolfgang y vivo en Berlin"
|
31 |
+
Entidades: Wolfgang:PER, Berlin:LOC
|
32 |
+
----
|
33 |
+
Extrae las entidades nombradas del siguiente texto:
|
34 |
+
Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center"
|
35 |
+
Entidades: parc güell:LOC, barcelona supercomputing center:LOC
|
36 |
+
----
|
37 |
+
Extrae las entidades nombradas del siguiente texto:
|
38 |
+
Texto: "Maria y Miguel no tienen ningún problema contigo"
|
39 |
+
Entidades: Maria:PER, Miguel:PER
|
40 |
+
----
|
41 |
+
Extrae las entidades nombradas del siguiente texto:
|
42 |
+
Texto: "Damián se cortó el pelo"
|
43 |
+
Entidades: Damián:PER
|
44 |
+
----
|
45 |
+
Extrae las entidades nombradas del siguiente texto:
|
46 |
+
Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo"
|
47 |
+
Entidades: Pablo:PER, Barcelona:LOC
|
48 |
+
----
|
49 |
+
Extrae las entidades nombradas del siguiente texto:
|
50 |
+
Texto: "Carlos comparte piso con Marc"
|
51 |
+
Entidades:
|
52 |
+
example_title: Entidades-Nombradas
|
53 |
---
|
54 |
+
|
55 |
+
# CaBLOOM-760M
|
56 |
+
|
57 |
+
## Table of Contents
|
58 |
+
<details>
|
59 |
+
<summary>Click to expand</summary>
|
60 |
+
|
61 |
+
- [Model description](#model-description)
|
62 |
+
- [Intended uses and limitations](#intended-uses-and-limitations)
|
63 |
+
- [How to use](#how-to-use)
|
64 |
+
- [Limitations and bias](#limitations-and-bias)
|
65 |
+
- [Training](#training)
|
66 |
+
- [Evaluation](#evaluation)
|
67 |
+
- [Additional information](#additional-information)
|
68 |
+
|
69 |
+
</details>
|
70 |
+
|
71 |
+
## Model description
|
72 |
+
|
73 |
+
**CaBLOOM-760M** is a 760M-parameter transformer-based causal language model for Catalan, Spanish, and English.
|
74 |
+
It is the result of a language adaptation technique performed on [BLOOM-1.1B](https://huggingface.co/bigscience/bloom-1b1),
|
75 |
+
which involves modifying the model's vocabulary and embedding layer, and continuously pre-training the model with 26B tokens in our target languages.
|
76 |
+
|
77 |
+
This model has been developed as part of a scientific research submitted to [LREC-COLING 2024](https://lrec-coling-2024.org/), and is currently undergoing a peer review process.
|
78 |
+
|
79 |
+
## Intended uses and limitations
|
80 |
+
|
81 |
+
The **CaBLOOM-760M** model is ready-to-use only for causal language modeling.
|
82 |
+
It can perform text-generation tasks and be fine-tuned for specific scenarios.
|
83 |
+
|
84 |
+
## How to use
|
85 |
+
```python
|
86 |
+
import torch
|
87 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
88 |
+
|
89 |
+
input_text = "Sovint em trobo pensant en tot allò que"
|
90 |
+
|
91 |
+
model_id = "BSC-LT/CaBLOOM-760M"
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
93 |
+
generator = pipeline(
|
94 |
+
"text-generation",
|
95 |
+
model=model_id,
|
96 |
+
tokenizer=tokenizer,
|
97 |
+
torch_dtype=torch.bfloat16,
|
98 |
+
trust_remote_code=True,
|
99 |
+
device_map="auto",
|
100 |
+
)
|
101 |
+
generation = generator(
|
102 |
+
input_text,
|
103 |
+
do_sample=True,
|
104 |
+
top_k=10,
|
105 |
+
eos_token_id=tokenizer.eos_token_id,
|
106 |
+
)
|
107 |
+
|
108 |
+
print(f"Result: {generation[0]['generated_text']}")
|
109 |
+
```
|
110 |
+
|
111 |
+
## Limitations and bias
|
112 |
+
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model.
|
113 |
+
However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques
|
114 |
+
on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
|
115 |
+
|
116 |
+
|
117 |
+
## Training
|
118 |
+
|
119 |
+
### Language adaptation and training
|
120 |
+
|
121 |
+
The language adaptation technique used to create CaBLOOM-1.3B requires the vocabulary of the source model
|
122 |
+
to be adapted before continuing its pre-training with data in the target languages. Specifically, we proceeded as follows:
|
123 |
+
1) We trained our own BPE tokenizer for Catalan, Spanish, and English, and replaced the original BLOOM tokenizer and vocabulary with it. This procedure implied a downsizing of the original BLOOM's embedding layer and, therefore, a model compression from 1.7B parameters to 1.3B.
|
124 |
+
2) The embeddings corresponding to tokens that are present in both the original and the target vocabulary (matching tokens) were used for initialization.
|
125 |
+
3) The embeddings from tokens not present in BLOOM's original vocabulary were initialized as the average of all embeddings.
|
126 |
+
4) The model was initialized with the weights from BOOM-1.7B, and with our adapted tokenizer (step 1) and embeddings (steps 2-3).
|
127 |
+
5) The model was then trained on a corpus that contains a mixture of Catalan, Spanish and English data.
|
128 |
+
|
129 |
+
### Training data
|
130 |
+
|
131 |
+
The training corpus is the same that was used to train [Ǎguila-7B](https://huggingface.co/projecte-aina/aguila-7b).
|
132 |
+
It consists of 26B tokens of several corpora gathered from web crawlings and public domain data.
|
133 |
+
|
134 |
+
| Dataset | Language | Words (per-epoch) | Epochs |
|
135 |
+
|---------------------|----------|--------------------|--------------|
|
136 |
+
| Wikipedia | en | 2169.97M | 1.428144485 |
|
137 |
+
| C4_es | es | 53709.80M | 0.1049686196 |
|
138 |
+
| Biomedical | es | 455.03M | 0.7140722425 |
|
139 |
+
| Legal | es | 995.70M | 0.7140722425 |
|
140 |
+
| Wikipedia | es | 693.60M | 1.428144485 |
|
141 |
+
| Gutenberg | es | 53.18M | 0.7140722425 |
|
142 |
+
| C4_ca | ca | 2826.00M | 2.142216727 |
|
143 |
+
| Biomedical | ca | 11.80M | 1.428144485 |
|
144 |
+
| RacoCatalà Noticias | ca | 17.16M | 2.142216727 |
|
145 |
+
| RacoCatalà Forums | ca | 333.73M | 2.142216727 |
|
146 |
+
| CaWaC | ca | 57.79M | 2.142216727 |
|
147 |
+
| Wikipedia | ca | 228.01M | 3.570361212 |
|
148 |
+
| Vilaweb | ca | 50.34M | 2.142216727 |
|
149 |
+
|
150 |
+
### Languages
|
151 |
+
|
152 |
+
The training data has the same amount of Catalan and Spanish texts, and a smaller amount of English data.
|
153 |
+
The table below shows the final language distribution:
|
154 |
+
|
155 |
+
|Language|Percentage|
|
156 |
+
|--------|----------|
|
157 |
+
| English (EN) | 16.84% |
|
158 |
+
| Spanish (ES) | 41.38% |
|
159 |
+
| Catalan (CA) | 41.79% |
|
160 |
+
|
161 |
+
### Training hyperparameters
|
162 |
+
- seed: 1
|
163 |
+
- distributed_type: [WSE-2](https://www.cerebras.net/product-chip/)
|
164 |
+
- num_devices: 1
|
165 |
+
- train_batch_size: 60
|
166 |
+
- eval_batch_size: 60
|
167 |
+
- optimizer: AdamW
|
168 |
+
- betas: (0.9,0.95)
|
169 |
+
- epsilon: 1e-08
|
170 |
+
- weight_decay_rate: 0.1
|
171 |
+
- learning_rate:
|
172 |
+
- scheduler: "Linear"
|
173 |
+
initial_learning_rate: 0.0
|
174 |
+
end_learning_rate: 4.1e-5
|
175 |
+
steps: 3050
|
176 |
+
- scheduler: "CosineDecay"
|
177 |
+
initial_learning_rate: 4.1e-5
|
178 |
+
end_learning_rate: 3.4e-6
|
179 |
+
steps: 209133
|
180 |
+
- scheduler: "Constant"
|
181 |
+
learning_rate: 2.2e-6
|
182 |
+
- num_epochs: 1.0
|
183 |
+
|
184 |
+
### Framework versions
|
185 |
+
The training was conducted in a Cerebras' [CS-2 system](https://www.cerebras.net/product-system/)
|
186 |
+
using the [cs-1.9.1](https://github.com/Cerebras/modelzoo/releases/tag/Release_1.9.1) release of their software.
|
187 |
+
|
188 |
+
|
189 |
+
## Evaluation
|
190 |
+
CaBLOOM-760M has been evaluated on 5-shot, using EleutherAI's Evaluation Harness implementation, on several datasets in Catalan, Spanish and English, with particular emphasis on Catalan datasets.
|
191 |
+
|
192 |
+
The tasks were chosen to cover several evaluation areas in order to provide a comprehensive overview of the model's capabilities. The baselines used to compare our results are multilingual and English open-source 1.3B models: mGPT-1.3B, GPT-Neo-1.3B, Pythia-1.4B, OPT-1.3B, Falcon-rw-1.3B, and Cerebras-GPT-1.3B.
|
193 |
+
|
194 |
+
Our implementation of EleutherAI's *LM Evaluation Harness* can be found [here](https://github.com/langtech-bsc/lm-evaluation-harness/tree/cabloom-eval).
|
195 |
+
|
196 |
+
The following is a list of evaluation areas and their respective datasets:
|
197 |
+
- Reading Comprehension: [Belebele](https://huggingface.co/datasets/facebook/belebele)
|
198 |
+
- Question Answering: [XQuAD](https://huggingface.co/datasets/xquad), [CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa), [CoQCat](https://huggingface.co/datasets/projecte-aina/CoQCat)
|
199 |
+
- Natural Language Inference: [XNLI](https://huggingface.co/datasets/xnli) and its translation to Catalan ([XNLI-ca](https://huggingface.co/datasets/projecte-aina/xnli-ca)), [TE-ca](https://huggingface.co/datasets/projecte-aina/teca)
|
200 |
+
- Paraphrase Identification: [PAWS-X](https://huggingface.co/datasets/paws-x) and its translation to Catalan ([PAWS-ca](https://huggingface.co/datasets/projecte-aina/PAWS-ca)), [Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja)
|
201 |
+
- Commonsense Reasoning: [COPA](https://people.ict.usc.edu/~gordon/copa.html) and its translation to Catalan ([COPA-ca](https://huggingface.co/datasets/projecte-aina/COPA-ca))
|
202 |
+
- Translation: [FLoRes](https://huggingface.co/datasets/flores)
|
203 |
+
|
204 |
+
|
205 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/635ba692dc371b8f91005172/o595pF7dw-iTuR1_x4MVy.png)
|
206 |
+
|
207 |
+
|
208 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/635ba692dc371b8f91005172/DhrkZG8Xqob7Ml4n6zQcY.png)
|
209 |
+
|
210 |
+
|
211 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/635ba692dc371b8f91005172/PxgzqXAelUoWY-23zXvPm.png){ width: 200px; }
|
212 |
+
|
213 |
+
|
214 |
+
## Additional information
|
215 |
+
|
216 |
+
### Author
|
217 |
+
The Language Technologies Unit from Barcelona Supercomputing Center.
|
218 |
+
|
219 |
+
### Contact
|
220 |
+
For further information, please send an email to <[email protected]>.
|
221 |
+
|
222 |
+
### Copyright
|
223 |
+
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.
|
224 |
+
|
225 |
+
### License
|
226 |
+
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
227 |
+
|
228 |
+
### Funding
|
229 |
+
This work was funded by [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
|
230 |
+
|
231 |
+
### Disclaimer
|
232 |
+
|
233 |
+
<details>
|
234 |
+
<summary>Click to expand</summary>
|
235 |
+
|
236 |
+
The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0.
|
237 |
+
|
238 |
+
Be aware that the model may have biases and/or any other undesirable distortions.
|
239 |
+
|
240 |
+
When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it)
|
241 |
+
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and,
|
242 |
+
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
|
243 |
+
|
244 |
+
In no event shall the owner and creator of the model (Barcelona Supercomputing Center)
|
245 |
+
be liable for any results arising from the use made by third parties.
|
246 |
+
|
247 |
+
</details>
|