File size: 5,865 Bytes
a304cd1 37a9a78 a304cd1 693ffd6 a304cd1 3354aea a304cd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# ST-NLI-ca_paraphrase-multilingual-mpnet-base
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
It has been developed through further training of a multilingual fine-tuned model, [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) using NLI data. Specifically, it was trained on two Catalan NLI datasets: [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) and the professional translation of XNLI into Catalan. The training employed the Multiple Negatives Ranking Loss with Hard Negatives, which leverages triplets composed of a premise, an entailed hypothesis, and a contradiction. It is important to note that, given this format, neutral hypotheses from the NLI datasets were not used for training. Additionally, as a form of data augmentation, the model's training set was expanded by duplicating the triplets, wherein the order of the premise and entailed hypothesis was reversed, resulting in a total of 18,928 triplets.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer, util
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
For instance, to sort a list of sentences by their similarity to a reference sentence, the following code can be used:
```python
reference_sent = "Avui és un bon dia."
sentences = [
"M'agrada el dia que fa.",
"Tothom té un mal dia.",
"És dijous.",
"Fa un dia realment dolent",
]
reference_sent_embedding = model.encode(reference_sent)
similarity_scores = {}
for sentence in sentences:
sent_embedding = model.encode(sentence)
cosine_similarity = util.pytorch_cos_sim(reference_sent_embedding, sent_embedding)
similarity_scores[float(cosine_similarity.data[0][0])] = sentence
print(f"Sentences in order of similarity to '{reference_sent}' (from max to min):")
for i, (cosine_similarity,sent) in enumerate(dict(sorted(similarity_scores.items(), reverse=True)).items()):
print(f"{i}) '{sent}': {cosine_similarity}")
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
We evaluated the model on the test set of the Catalan Semantic Text Similarity ([STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca)), and on two paraphrase identification tasks in Catalan: [Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja) and the professional translation of PAWS into Catalan.
| STS-ca (Pearson) | Parafraseja (acc) | PAWS-ca (acc) |
|------------------|-------------------|---------------|
| 0.65 | 0.72 | 0.65 |
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 147 with parameters:
```
{'batch_size': 128}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 14,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 15,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
For further information, send an email to [email protected] |