ziansu commited on
Commit
6edea20
·
verified ·
1 Parent(s): f9e4751

Training in progress, step 700, checkpoint

Browse files
checkpoint-700/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-700/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "qkv_proj",
27
+ "gate_up_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-700/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16a98f9a5d5751f392e3f2ca3c1e35d7247f5e61970f40b07693cc4fc268c69e
3
+ size 25200088
checkpoint-700/global_step700/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a9b7400fbd688b88b21cead12582ba39d6fbc68799f41cdb676337a10296a9e
3
+ size 18881328
checkpoint-700/global_step700/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:002c35770806980fe9b4c8abf8df28cffdf4b4885d503287b133e07a5e025fbc
3
+ size 18881328
checkpoint-700/global_step700/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12ae64c259c27ce9043e3edfda7f358aa53b6f6fd362b129f184cc9a4181a739
3
+ size 18881328
checkpoint-700/global_step700/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a4b741baecd27e5578099635d91a17fbbcea5b570462da8ef991a9052b860cb
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3507325f7a74051a0b24b48c1d56587e9d371e8e1db16fd7a429ef97a5bbda6f
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d363da752aa6813acba0d3284862b55a95ca1f9e1e065988109a023a501a596
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c20c64c214ad4a7b812b7713c2970bc52b59dad99f590662166a5615fd9f23e4
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a6424a949378e2ed2516bd0f770dcdc38115f55ee9390d4e32b0604e6a1a928
3
+ size 18881392
checkpoint-700/global_step700/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:253343cc09279fe354d42c10df6349f8d1757426193eff4ef45d56fd6279a875
3
+ size 25379244
checkpoint-700/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step700
checkpoint-700/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d1be83d8248a4d086961979df8c8adf273c0891e791d7b637d9e752cbaf971
3
+ size 15984
checkpoint-700/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df16bc8587b83b59d73ffcb4774bab640ed2bbf6249aba7b7112751df7280b58
3
+ size 15984
checkpoint-700/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8ebd66766c47747d9d34f4ee4e6f1e09fb1843f9769ec17242277c256d80133
3
+ size 15984
checkpoint-700/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44591b56351d86ebac6b6310a6b9a58bf9ebd5af691efd9614e457180a22080
3
+ size 15984
checkpoint-700/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2488c2baf1f7983e7e82c869c2ff023bdc7796ba97390c46686a4df8544a046
3
+ size 15984
checkpoint-700/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a864d68e543f00211ae2c48a5b9f47a92cf862dc03f0cda64f0647177108efe6
3
+ size 15984
checkpoint-700/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4ab980d3568f3d6a91c3cc4b09b1c84c8bbbd77347d21d918824619ddb9bc7f
3
+ size 15984
checkpoint-700/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a7008a4087300200a04419d46f39b98daf870297f179e965bf970ef908f90f3
3
+ size 15984
checkpoint-700/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:178a633ca77249e494a838a84b1947b0f7d11ddc3db2f6e8c894966583a0a8c6
3
+ size 1064
checkpoint-700/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-700/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-700/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-700/trainer_state.json ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6016330038676407,
5
+ "eval_steps": 50,
6
+ "global_step": 700,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008594757198109154,
13
+ "grad_norm": 0.05934199318289757,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.762972831726074,
16
+ "logits/rejected": 15.199728012084961,
17
+ "logps/chosen": -0.3259914815425873,
18
+ "logps/rejected": -0.34297481179237366,
19
+ "loss": 0.9377,
20
+ "rewards/accuracies": 0.4000000059604645,
21
+ "rewards/chosen": -0.4889872074127197,
22
+ "rewards/margins": 0.02547495998442173,
23
+ "rewards/rejected": -0.5144621729850769,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.017189514396218308,
28
+ "grad_norm": 0.06342790275812149,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.351249694824219,
31
+ "logits/rejected": 15.068448066711426,
32
+ "logps/chosen": -0.2809392511844635,
33
+ "logps/rejected": -0.3711296617984772,
34
+ "loss": 0.9352,
35
+ "rewards/accuracies": 0.574999988079071,
36
+ "rewards/chosen": -0.42140883207321167,
37
+ "rewards/margins": 0.1352856159210205,
38
+ "rewards/rejected": -0.5566944479942322,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.02578427159432746,
43
+ "grad_norm": 0.053961098194122314,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.636960983276367,
46
+ "logits/rejected": 15.265243530273438,
47
+ "logps/chosen": -0.2820780873298645,
48
+ "logps/rejected": -0.34024301171302795,
49
+ "loss": 0.9351,
50
+ "rewards/accuracies": 0.4749999940395355,
51
+ "rewards/chosen": -0.42311716079711914,
52
+ "rewards/margins": 0.08724743127822876,
53
+ "rewards/rejected": -0.5103646516799927,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.034379028792436615,
58
+ "grad_norm": 0.13506193459033966,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.4556884765625,
61
+ "logits/rejected": 15.048967361450195,
62
+ "logps/chosen": -0.2897028625011444,
63
+ "logps/rejected": -0.34129124879837036,
64
+ "loss": 0.922,
65
+ "rewards/accuracies": 0.44999998807907104,
66
+ "rewards/chosen": -0.43455424904823303,
67
+ "rewards/margins": 0.07738252729177475,
68
+ "rewards/rejected": -0.5119368433952332,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.042973785990545764,
73
+ "grad_norm": 0.05230574309825897,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.628789901733398,
76
+ "logits/rejected": 15.307828903198242,
77
+ "logps/chosen": -0.28786614537239075,
78
+ "logps/rejected": -0.3513876795768738,
79
+ "loss": 0.9201,
80
+ "rewards/accuracies": 0.5375000238418579,
81
+ "rewards/chosen": -0.4317992329597473,
82
+ "rewards/margins": 0.09528233855962753,
83
+ "rewards/rejected": -0.5270815491676331,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.042973785990545764,
88
+ "eval_logits/chosen": 14.234943389892578,
89
+ "eval_logits/rejected": 15.258601188659668,
90
+ "eval_logps/chosen": -0.2844341993331909,
91
+ "eval_logps/rejected": -0.3695394694805145,
92
+ "eval_loss": 0.9226060509681702,
93
+ "eval_rewards/accuracies": 0.5157894492149353,
94
+ "eval_rewards/chosen": -0.42665132880210876,
95
+ "eval_rewards/margins": 0.1276579648256302,
96
+ "eval_rewards/rejected": -0.5543092489242554,
97
+ "eval_runtime": 25.9356,
98
+ "eval_samples_per_second": 29.033,
99
+ "eval_steps_per_second": 3.663,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.05156854318865492,
104
+ "grad_norm": 0.09328428655862808,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.35963249206543,
107
+ "logits/rejected": 15.055354118347168,
108
+ "logps/chosen": -0.27534741163253784,
109
+ "logps/rejected": -0.33098170161247253,
110
+ "loss": 0.9356,
111
+ "rewards/accuracies": 0.512499988079071,
112
+ "rewards/chosen": -0.4130210876464844,
113
+ "rewards/margins": 0.08345144242048264,
114
+ "rewards/rejected": -0.4964725375175476,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.060163300386764075,
119
+ "grad_norm": 0.06518550217151642,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.599525451660156,
122
+ "logits/rejected": 14.825297355651855,
123
+ "logps/chosen": -0.2708163857460022,
124
+ "logps/rejected": -0.3305850923061371,
125
+ "loss": 0.9257,
126
+ "rewards/accuracies": 0.550000011920929,
127
+ "rewards/chosen": -0.4062245786190033,
128
+ "rewards/margins": 0.08965305984020233,
129
+ "rewards/rejected": -0.4958776533603668,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.06875805758487323,
134
+ "grad_norm": 0.07543154805898666,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 14.947430610656738,
137
+ "logits/rejected": 15.093690872192383,
138
+ "logps/chosen": -0.2602943778038025,
139
+ "logps/rejected": -0.31820863485336304,
140
+ "loss": 0.9168,
141
+ "rewards/accuracies": 0.5,
142
+ "rewards/chosen": -0.39044153690338135,
143
+ "rewards/margins": 0.08687138557434082,
144
+ "rewards/rejected": -0.47731298208236694,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07735281478298238,
149
+ "grad_norm": 0.06628195196390152,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 14.43529987335205,
152
+ "logits/rejected": 14.750699043273926,
153
+ "logps/chosen": -0.2884291708469391,
154
+ "logps/rejected": -0.34193652868270874,
155
+ "loss": 0.9273,
156
+ "rewards/accuracies": 0.5249999761581421,
157
+ "rewards/chosen": -0.43264374136924744,
158
+ "rewards/margins": 0.08026103675365448,
159
+ "rewards/rejected": -0.5129047632217407,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08594757198109153,
164
+ "grad_norm": 0.08684897422790527,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 13.573002815246582,
167
+ "logits/rejected": 14.441877365112305,
168
+ "logps/chosen": -0.2569890320301056,
169
+ "logps/rejected": -0.37049269676208496,
170
+ "loss": 0.9009,
171
+ "rewards/accuracies": 0.574999988079071,
172
+ "rewards/chosen": -0.3854835629463196,
173
+ "rewards/margins": 0.17025551199913025,
174
+ "rewards/rejected": -0.5557390451431274,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08594757198109153,
179
+ "eval_logits/chosen": 14.026633262634277,
180
+ "eval_logits/rejected": 15.08835220336914,
181
+ "eval_logps/chosen": -0.2761566936969757,
182
+ "eval_logps/rejected": -0.3717801570892334,
183
+ "eval_loss": 0.9138591885566711,
184
+ "eval_rewards/accuracies": 0.5368421077728271,
185
+ "eval_rewards/chosen": -0.41423505544662476,
186
+ "eval_rewards/margins": 0.1434352546930313,
187
+ "eval_rewards/rejected": -0.5576702952384949,
188
+ "eval_runtime": 25.3996,
189
+ "eval_samples_per_second": 29.646,
190
+ "eval_steps_per_second": 3.74,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.09454232917920069,
195
+ "grad_norm": 0.08046824485063553,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 14.500630378723145,
198
+ "logits/rejected": 14.831761360168457,
199
+ "logps/chosen": -0.30049553513526917,
200
+ "logps/rejected": -0.3315966725349426,
201
+ "loss": 0.916,
202
+ "rewards/accuracies": 0.4625000059604645,
203
+ "rewards/chosen": -0.45074325799942017,
204
+ "rewards/margins": 0.04665176197886467,
205
+ "rewards/rejected": -0.49739497900009155,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.10313708637730984,
210
+ "grad_norm": 0.12244562804698944,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 14.26713752746582,
213
+ "logits/rejected": 14.495455741882324,
214
+ "logps/chosen": -0.2670941650867462,
215
+ "logps/rejected": -0.32481229305267334,
216
+ "loss": 0.9167,
217
+ "rewards/accuracies": 0.550000011920929,
218
+ "rewards/chosen": -0.4006412625312805,
219
+ "rewards/margins": 0.08657723665237427,
220
+ "rewards/rejected": -0.4872184693813324,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.11173184357541899,
225
+ "grad_norm": 0.1828213334083557,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 14.009546279907227,
228
+ "logits/rejected": 14.297094345092773,
229
+ "logps/chosen": -0.27995598316192627,
230
+ "logps/rejected": -0.3530685007572174,
231
+ "loss": 0.9087,
232
+ "rewards/accuracies": 0.5249999761581421,
233
+ "rewards/chosen": -0.419933944940567,
234
+ "rewards/margins": 0.10966875404119492,
235
+ "rewards/rejected": -0.5296027660369873,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.12032660077352815,
240
+ "grad_norm": 0.10407563298940659,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 13.689155578613281,
243
+ "logits/rejected": 14.1933012008667,
244
+ "logps/chosen": -0.25955715775489807,
245
+ "logps/rejected": -0.3815004229545593,
246
+ "loss": 0.9053,
247
+ "rewards/accuracies": 0.612500011920929,
248
+ "rewards/chosen": -0.3893357217311859,
249
+ "rewards/margins": 0.18291489779949188,
250
+ "rewards/rejected": -0.5722506046295166,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.1289213579716373,
255
+ "grad_norm": 0.10028588026762009,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 12.851397514343262,
258
+ "logits/rejected": 13.509778022766113,
259
+ "logps/chosen": -0.23652991652488708,
260
+ "logps/rejected": -0.3720462918281555,
261
+ "loss": 0.8999,
262
+ "rewards/accuracies": 0.625,
263
+ "rewards/chosen": -0.3547949194908142,
264
+ "rewards/margins": 0.2032744586467743,
265
+ "rewards/rejected": -0.5580693483352661,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.1289213579716373,
270
+ "eval_logits/chosen": 12.384929656982422,
271
+ "eval_logits/rejected": 13.672826766967773,
272
+ "eval_logps/chosen": -0.27857670187950134,
273
+ "eval_logps/rejected": -0.4014737904071808,
274
+ "eval_loss": 0.8956203460693359,
275
+ "eval_rewards/accuracies": 0.5684210658073425,
276
+ "eval_rewards/chosen": -0.4178650677204132,
277
+ "eval_rewards/margins": 0.18434564769268036,
278
+ "eval_rewards/rejected": -0.6022107601165771,
279
+ "eval_runtime": 25.4176,
280
+ "eval_samples_per_second": 29.625,
281
+ "eval_steps_per_second": 3.738,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.13751611516974646,
286
+ "grad_norm": 0.12453093379735947,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 12.110003471374512,
289
+ "logits/rejected": 13.076980590820312,
290
+ "logps/chosen": -0.27192068099975586,
291
+ "logps/rejected": -0.3863692879676819,
292
+ "loss": 0.8907,
293
+ "rewards/accuracies": 0.5874999761581421,
294
+ "rewards/chosen": -0.4078810214996338,
295
+ "rewards/margins": 0.1716729700565338,
296
+ "rewards/rejected": -0.5795539617538452,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.1461108723678556,
301
+ "grad_norm": 0.17137788236141205,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 11.92918586730957,
304
+ "logits/rejected": 12.573629379272461,
305
+ "logps/chosen": -0.27472984790802,
306
+ "logps/rejected": -0.41249385476112366,
307
+ "loss": 0.8831,
308
+ "rewards/accuracies": 0.612500011920929,
309
+ "rewards/chosen": -0.41209474205970764,
310
+ "rewards/margins": 0.20664596557617188,
311
+ "rewards/rejected": -0.6187406778335571,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.15470562956596476,
316
+ "grad_norm": 0.3904883861541748,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 11.182531356811523,
319
+ "logits/rejected": 12.176573753356934,
320
+ "logps/chosen": -0.2953718304634094,
321
+ "logps/rejected": -0.4208717942237854,
322
+ "loss": 0.8736,
323
+ "rewards/accuracies": 0.5375000238418579,
324
+ "rewards/chosen": -0.4430577754974365,
325
+ "rewards/margins": 0.18824996054172516,
326
+ "rewards/rejected": -0.6313077211380005,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.1633003867640739,
331
+ "grad_norm": 0.17574089765548706,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 10.119890213012695,
334
+ "logits/rejected": 11.05900764465332,
335
+ "logps/chosen": -0.29340866208076477,
336
+ "logps/rejected": -0.4555762708187103,
337
+ "loss": 0.884,
338
+ "rewards/accuracies": 0.625,
339
+ "rewards/chosen": -0.44011297821998596,
340
+ "rewards/margins": 0.24325144290924072,
341
+ "rewards/rejected": -0.6833644509315491,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.17189514396218306,
346
+ "grad_norm": 0.2242884337902069,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 9.674784660339355,
349
+ "logits/rejected": 10.418611526489258,
350
+ "logps/chosen": -0.3504490852355957,
351
+ "logps/rejected": -0.5431731939315796,
352
+ "loss": 0.8419,
353
+ "rewards/accuracies": 0.612500011920929,
354
+ "rewards/chosen": -0.5256736278533936,
355
+ "rewards/margins": 0.2890861928462982,
356
+ "rewards/rejected": -0.8147598505020142,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.17189514396218306,
361
+ "eval_logits/chosen": 7.944870471954346,
362
+ "eval_logits/rejected": 8.979729652404785,
363
+ "eval_logps/chosen": -0.33341673016548157,
364
+ "eval_logps/rejected": -0.5431775450706482,
365
+ "eval_loss": 0.8462886810302734,
366
+ "eval_rewards/accuracies": 0.6000000238418579,
367
+ "eval_rewards/chosen": -0.5001251101493835,
368
+ "eval_rewards/margins": 0.3146411180496216,
369
+ "eval_rewards/rejected": -0.8147663474082947,
370
+ "eval_runtime": 25.419,
371
+ "eval_samples_per_second": 29.623,
372
+ "eval_steps_per_second": 3.737,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.18048990116029223,
377
+ "grad_norm": 0.32119837403297424,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 7.16138219833374,
380
+ "logits/rejected": 8.43680477142334,
381
+ "logps/chosen": -0.36649250984191895,
382
+ "logps/rejected": -0.5420924425125122,
383
+ "loss": 0.8187,
384
+ "rewards/accuracies": 0.612500011920929,
385
+ "rewards/chosen": -0.5497387647628784,
386
+ "rewards/margins": 0.2633998692035675,
387
+ "rewards/rejected": -0.8131386041641235,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.18908465835840138,
392
+ "grad_norm": 0.48516562581062317,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 4.770083427429199,
395
+ "logits/rejected": 5.710458278656006,
396
+ "logps/chosen": -0.34041497111320496,
397
+ "logps/rejected": -0.6309320330619812,
398
+ "loss": 0.8448,
399
+ "rewards/accuracies": 0.675000011920929,
400
+ "rewards/chosen": -0.510622501373291,
401
+ "rewards/margins": 0.4357755780220032,
402
+ "rewards/rejected": -0.9463980793952942,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.19767941555651053,
407
+ "grad_norm": 0.29154208302497864,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 5.168765068054199,
410
+ "logits/rejected": 5.421420574188232,
411
+ "logps/chosen": -0.3792352080345154,
412
+ "logps/rejected": -0.65748131275177,
413
+ "loss": 0.8066,
414
+ "rewards/accuracies": 0.6625000238418579,
415
+ "rewards/chosen": -0.5688528418540955,
416
+ "rewards/margins": 0.41736921668052673,
417
+ "rewards/rejected": -0.986221969127655,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.20627417275461968,
422
+ "grad_norm": 0.42973750829696655,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 4.204717636108398,
425
+ "logits/rejected": 3.706291913986206,
426
+ "logps/chosen": -0.39414530992507935,
427
+ "logps/rejected": -0.7194588780403137,
428
+ "loss": 0.7787,
429
+ "rewards/accuracies": 0.6499999761581421,
430
+ "rewards/chosen": -0.5912179350852966,
431
+ "rewards/margins": 0.4879704415798187,
432
+ "rewards/rejected": -1.079188346862793,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.21486892995272883,
437
+ "grad_norm": 0.5244571566581726,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 3.335484743118286,
440
+ "logits/rejected": 3.3176345825195312,
441
+ "logps/chosen": -0.4493131637573242,
442
+ "logps/rejected": -0.8293434381484985,
443
+ "loss": 0.7776,
444
+ "rewards/accuracies": 0.625,
445
+ "rewards/chosen": -0.6739697456359863,
446
+ "rewards/margins": 0.5700454115867615,
447
+ "rewards/rejected": -1.244015097618103,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.21486892995272883,
452
+ "eval_logits/chosen": 2.590949058532715,
453
+ "eval_logits/rejected": 2.2929749488830566,
454
+ "eval_logps/chosen": -0.48714593052864075,
455
+ "eval_logps/rejected": -0.9267774224281311,
456
+ "eval_loss": 0.7469337582588196,
457
+ "eval_rewards/accuracies": 0.6526315808296204,
458
+ "eval_rewards/chosen": -0.7307189106941223,
459
+ "eval_rewards/margins": 0.659447193145752,
460
+ "eval_rewards/rejected": -1.390166163444519,
461
+ "eval_runtime": 25.3944,
462
+ "eval_samples_per_second": 29.652,
463
+ "eval_steps_per_second": 3.741,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.22346368715083798,
468
+ "grad_norm": 0.39347293972969055,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 2.2975668907165527,
471
+ "logits/rejected": 1.2855035066604614,
472
+ "logps/chosen": -0.5228341817855835,
473
+ "logps/rejected": -1.00227952003479,
474
+ "loss": 0.6981,
475
+ "rewards/accuracies": 0.7124999761581421,
476
+ "rewards/chosen": -0.78425133228302,
477
+ "rewards/margins": 0.7191681265830994,
478
+ "rewards/rejected": -1.5034195184707642,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.23205844434894715,
483
+ "grad_norm": 0.69575434923172,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 2.8782780170440674,
486
+ "logits/rejected": 1.9394336938858032,
487
+ "logps/chosen": -0.4982885718345642,
488
+ "logps/rejected": -1.035541296005249,
489
+ "loss": 0.7174,
490
+ "rewards/accuracies": 0.7250000238418579,
491
+ "rewards/chosen": -0.7474328875541687,
492
+ "rewards/margins": 0.8058789372444153,
493
+ "rewards/rejected": -1.5533119440078735,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.2406532015470563,
498
+ "grad_norm": 0.7858326435089111,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 2.710908889770508,
501
+ "logits/rejected": 1.6444288492202759,
502
+ "logps/chosen": -0.600068211555481,
503
+ "logps/rejected": -1.1271780729293823,
504
+ "loss": 0.6972,
505
+ "rewards/accuracies": 0.6625000238418579,
506
+ "rewards/chosen": -0.9001023173332214,
507
+ "rewards/margins": 0.7906648516654968,
508
+ "rewards/rejected": -1.6907672882080078,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.24924795874516545,
513
+ "grad_norm": 0.7384620904922485,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 1.5841500759124756,
516
+ "logits/rejected": 0.640514612197876,
517
+ "logps/chosen": -0.6465060710906982,
518
+ "logps/rejected": -1.4245095252990723,
519
+ "loss": 0.6192,
520
+ "rewards/accuracies": 0.612500011920929,
521
+ "rewards/chosen": -0.9697591066360474,
522
+ "rewards/margins": 1.1670053005218506,
523
+ "rewards/rejected": -2.1367642879486084,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.2578427159432746,
528
+ "grad_norm": 0.8262321352958679,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 1.7300422191619873,
531
+ "logits/rejected": 0.7782856225967407,
532
+ "logps/chosen": -0.7083590626716614,
533
+ "logps/rejected": -1.6742557287216187,
534
+ "loss": 0.5721,
535
+ "rewards/accuracies": 0.612500011920929,
536
+ "rewards/chosen": -1.062538504600525,
537
+ "rewards/margins": 1.4488452672958374,
538
+ "rewards/rejected": -2.511383533477783,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.2578427159432746,
543
+ "eval_logits/chosen": 1.3559931516647339,
544
+ "eval_logits/rejected": 0.6592276096343994,
545
+ "eval_logps/chosen": -0.7815767526626587,
546
+ "eval_logps/rejected": -2.1176154613494873,
547
+ "eval_loss": 0.5730626583099365,
548
+ "eval_rewards/accuracies": 0.7052631378173828,
549
+ "eval_rewards/chosen": -1.1723653078079224,
550
+ "eval_rewards/margins": 2.0040581226348877,
551
+ "eval_rewards/rejected": -3.1764233112335205,
552
+ "eval_runtime": 25.539,
553
+ "eval_samples_per_second": 29.484,
554
+ "eval_steps_per_second": 3.72,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.2664374731413838,
559
+ "grad_norm": 0.8472572565078735,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 1.4461088180541992,
562
+ "logits/rejected": 0.49669915437698364,
563
+ "logps/chosen": -0.7694377899169922,
564
+ "logps/rejected": -2.362783432006836,
565
+ "loss": 0.5091,
566
+ "rewards/accuracies": 0.762499988079071,
567
+ "rewards/chosen": -1.1541565656661987,
568
+ "rewards/margins": 2.390018939971924,
569
+ "rewards/rejected": -3.544174909591675,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.2750322303394929,
574
+ "grad_norm": 0.41847530007362366,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 2.172646999359131,
577
+ "logits/rejected": 1.0526962280273438,
578
+ "logps/chosen": -0.7410945296287537,
579
+ "logps/rejected": -1.9158353805541992,
580
+ "loss": 0.5352,
581
+ "rewards/accuracies": 0.675000011920929,
582
+ "rewards/chosen": -1.1116416454315186,
583
+ "rewards/margins": 1.7621114253997803,
584
+ "rewards/rejected": -2.873753070831299,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.28362698753760207,
589
+ "grad_norm": 1.7422096729278564,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 2.611234188079834,
592
+ "logits/rejected": 1.7068111896514893,
593
+ "logps/chosen": -0.8319486379623413,
594
+ "logps/rejected": -2.32024884223938,
595
+ "loss": 0.5397,
596
+ "rewards/accuracies": 0.6000000238418579,
597
+ "rewards/chosen": -1.2479230165481567,
598
+ "rewards/margins": 2.232450008392334,
599
+ "rewards/rejected": -3.480372905731201,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.2922217447357112,
604
+ "grad_norm": 0.8699240684509277,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 1.996747612953186,
607
+ "logits/rejected": 1.1473515033721924,
608
+ "logps/chosen": -0.8445833921432495,
609
+ "logps/rejected": -2.675687551498413,
610
+ "loss": 0.4817,
611
+ "rewards/accuracies": 0.699999988079071,
612
+ "rewards/chosen": -1.2668750286102295,
613
+ "rewards/margins": 2.7466559410095215,
614
+ "rewards/rejected": -4.01353120803833,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.30081650193382037,
619
+ "grad_norm": 2.089289426803589,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 1.7134803533554077,
622
+ "logits/rejected": 1.3000510931015015,
623
+ "logps/chosen": -0.8976927995681763,
624
+ "logps/rejected": -2.1593873500823975,
625
+ "loss": 0.5098,
626
+ "rewards/accuracies": 0.574999988079071,
627
+ "rewards/chosen": -1.3465392589569092,
628
+ "rewards/margins": 1.8925418853759766,
629
+ "rewards/rejected": -3.2390809059143066,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.30081650193382037,
634
+ "eval_logits/chosen": 1.6772903203964233,
635
+ "eval_logits/rejected": 1.2370609045028687,
636
+ "eval_logps/chosen": -0.9737761616706848,
637
+ "eval_logps/rejected": -3.1528680324554443,
638
+ "eval_loss": 0.5162621736526489,
639
+ "eval_rewards/accuracies": 0.7263157963752747,
640
+ "eval_rewards/chosen": -1.46066415309906,
641
+ "eval_rewards/margins": 3.2686376571655273,
642
+ "eval_rewards/rejected": -4.729301929473877,
643
+ "eval_runtime": 25.4163,
644
+ "eval_samples_per_second": 29.627,
645
+ "eval_steps_per_second": 3.738,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.3094112591319295,
650
+ "grad_norm": 0.47079572081565857,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 1.9561872482299805,
653
+ "logits/rejected": 0.8960329294204712,
654
+ "logps/chosen": -0.9378088712692261,
655
+ "logps/rejected": -2.8065876960754395,
656
+ "loss": 0.5046,
657
+ "rewards/accuracies": 0.675000011920929,
658
+ "rewards/chosen": -1.4067132472991943,
659
+ "rewards/margins": 2.8031680583953857,
660
+ "rewards/rejected": -4.209881782531738,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.31800601633003867,
665
+ "grad_norm": 0.6202365159988403,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 2.152726411819458,
668
+ "logits/rejected": 1.4309433698654175,
669
+ "logps/chosen": -1.007157564163208,
670
+ "logps/rejected": -3.3813462257385254,
671
+ "loss": 0.4526,
672
+ "rewards/accuracies": 0.800000011920929,
673
+ "rewards/chosen": -1.5107364654541016,
674
+ "rewards/margins": 3.561283588409424,
675
+ "rewards/rejected": -5.072019577026367,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.3266007735281478,
680
+ "grad_norm": 1.080393671989441,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 1.7528371810913086,
683
+ "logits/rejected": 1.3293968439102173,
684
+ "logps/chosen": -1.0258004665374756,
685
+ "logps/rejected": -2.984057903289795,
686
+ "loss": 0.4879,
687
+ "rewards/accuracies": 0.675000011920929,
688
+ "rewards/chosen": -1.5387006998062134,
689
+ "rewards/margins": 2.9373860359191895,
690
+ "rewards/rejected": -4.476086616516113,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.33519553072625696,
695
+ "grad_norm": 1.4520032405853271,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 3.061373233795166,
698
+ "logits/rejected": 2.0103466510772705,
699
+ "logps/chosen": -1.0191391706466675,
700
+ "logps/rejected": -2.9054081439971924,
701
+ "loss": 0.4776,
702
+ "rewards/accuracies": 0.625,
703
+ "rewards/chosen": -1.5287089347839355,
704
+ "rewards/margins": 2.8294031620025635,
705
+ "rewards/rejected": -4.358112335205078,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3437902879243661,
710
+ "grad_norm": 0.5479139089584351,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 2.8395092487335205,
713
+ "logits/rejected": 2.0935282707214355,
714
+ "logps/chosen": -1.0769506692886353,
715
+ "logps/rejected": -3.11635160446167,
716
+ "loss": 0.4686,
717
+ "rewards/accuracies": 0.6875,
718
+ "rewards/chosen": -1.6154258251190186,
719
+ "rewards/margins": 3.0591015815734863,
720
+ "rewards/rejected": -4.674527168273926,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3437902879243661,
725
+ "eval_logits/chosen": 2.5064592361450195,
726
+ "eval_logits/rejected": 2.108433485031128,
727
+ "eval_logps/chosen": -1.1957285404205322,
728
+ "eval_logps/rejected": -3.7678382396698,
729
+ "eval_loss": 0.46578800678253174,
730
+ "eval_rewards/accuracies": 0.7368420958518982,
731
+ "eval_rewards/chosen": -1.793592929840088,
732
+ "eval_rewards/margins": 3.8581647872924805,
733
+ "eval_rewards/rejected": -5.651757717132568,
734
+ "eval_runtime": 25.415,
735
+ "eval_samples_per_second": 29.628,
736
+ "eval_steps_per_second": 3.738,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.3523850451224753,
741
+ "grad_norm": 0.9966821670532227,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 2.6411917209625244,
744
+ "logits/rejected": 1.8634885549545288,
745
+ "logps/chosen": -1.0934125185012817,
746
+ "logps/rejected": -3.2207794189453125,
747
+ "loss": 0.4335,
748
+ "rewards/accuracies": 0.6625000238418579,
749
+ "rewards/chosen": -1.6401188373565674,
750
+ "rewards/margins": 3.1910502910614014,
751
+ "rewards/rejected": -4.831169128417969,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.36097980232058446,
756
+ "grad_norm": 0.6384722590446472,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 3.1368844509124756,
759
+ "logits/rejected": 2.3800251483917236,
760
+ "logps/chosen": -1.2108217477798462,
761
+ "logps/rejected": -3.484806537628174,
762
+ "loss": 0.4543,
763
+ "rewards/accuracies": 0.7124999761581421,
764
+ "rewards/chosen": -1.816232681274414,
765
+ "rewards/margins": 3.4109771251678467,
766
+ "rewards/rejected": -5.227209568023682,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.3695745595186936,
771
+ "grad_norm": 0.856741726398468,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 3.155728816986084,
774
+ "logits/rejected": 2.257838726043701,
775
+ "logps/chosen": -1.4214586019515991,
776
+ "logps/rejected": -4.186622619628906,
777
+ "loss": 0.4091,
778
+ "rewards/accuracies": 0.7749999761581421,
779
+ "rewards/chosen": -2.132187604904175,
780
+ "rewards/margins": 4.1477460861206055,
781
+ "rewards/rejected": -6.279933929443359,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.37816931671680276,
786
+ "grad_norm": 1.3310774564743042,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 1.9942185878753662,
789
+ "logits/rejected": 1.6246827840805054,
790
+ "logps/chosen": -1.8575637340545654,
791
+ "logps/rejected": -4.5355329513549805,
792
+ "loss": 0.3995,
793
+ "rewards/accuracies": 0.862500011920929,
794
+ "rewards/chosen": -2.7863457202911377,
795
+ "rewards/margins": 4.016953945159912,
796
+ "rewards/rejected": -6.8032989501953125,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.3867640739149119,
801
+ "grad_norm": 2.0849101543426514,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 2.406555652618408,
804
+ "logits/rejected": 2.0490009784698486,
805
+ "logps/chosen": -2.392570972442627,
806
+ "logps/rejected": -5.055584907531738,
807
+ "loss": 0.3671,
808
+ "rewards/accuracies": 0.887499988079071,
809
+ "rewards/chosen": -3.588855743408203,
810
+ "rewards/margins": 3.994520902633667,
811
+ "rewards/rejected": -7.583376884460449,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.3867640739149119,
816
+ "eval_logits/chosen": 2.2324020862579346,
817
+ "eval_logits/rejected": 2.365755319595337,
818
+ "eval_logps/chosen": -2.736898422241211,
819
+ "eval_logps/rejected": -5.73967170715332,
820
+ "eval_loss": 0.3965117633342743,
821
+ "eval_rewards/accuracies": 0.8736842274665833,
822
+ "eval_rewards/chosen": -4.105347633361816,
823
+ "eval_rewards/margins": 4.504159927368164,
824
+ "eval_rewards/rejected": -8.60950756072998,
825
+ "eval_runtime": 25.428,
826
+ "eval_samples_per_second": 29.613,
827
+ "eval_steps_per_second": 3.736,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.39535883111302106,
832
+ "grad_norm": 2.223949432373047,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 2.651564598083496,
835
+ "logits/rejected": 2.383842945098877,
836
+ "logps/chosen": -2.591308355331421,
837
+ "logps/rejected": -5.308972358703613,
838
+ "loss": 0.3412,
839
+ "rewards/accuracies": 0.762499988079071,
840
+ "rewards/chosen": -3.886962413787842,
841
+ "rewards/margins": 4.07649564743042,
842
+ "rewards/rejected": -7.963458061218262,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.4039535883111302,
847
+ "grad_norm": 3.110624074935913,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 2.5435309410095215,
850
+ "logits/rejected": 2.46763277053833,
851
+ "logps/chosen": -2.413583993911743,
852
+ "logps/rejected": -5.543262481689453,
853
+ "loss": 0.3832,
854
+ "rewards/accuracies": 0.824999988079071,
855
+ "rewards/chosen": -3.620375871658325,
856
+ "rewards/margins": 4.694517135620117,
857
+ "rewards/rejected": -8.314892768859863,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.41254834550923936,
862
+ "grad_norm": 1.6255794763565063,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 3.842928409576416,
865
+ "logits/rejected": 3.5797982215881348,
866
+ "logps/chosen": -2.6448044776916504,
867
+ "logps/rejected": -4.98160982131958,
868
+ "loss": 0.3547,
869
+ "rewards/accuracies": 0.8125,
870
+ "rewards/chosen": -3.9672069549560547,
871
+ "rewards/margins": 3.5052082538604736,
872
+ "rewards/rejected": -7.472414493560791,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.4211431027073485,
877
+ "grad_norm": 2.9274284839630127,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 3.3297150135040283,
880
+ "logits/rejected": 3.0205535888671875,
881
+ "logps/chosen": -2.811923027038574,
882
+ "logps/rejected": -6.040881156921387,
883
+ "loss": 0.3097,
884
+ "rewards/accuracies": 0.887499988079071,
885
+ "rewards/chosen": -4.217884063720703,
886
+ "rewards/margins": 4.843437194824219,
887
+ "rewards/rejected": -9.061322212219238,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.42973785990545765,
892
+ "grad_norm": 2.9143636226654053,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 2.760014772415161,
895
+ "logits/rejected": 2.535520315170288,
896
+ "logps/chosen": -3.068406820297241,
897
+ "logps/rejected": -5.877435684204102,
898
+ "loss": 0.3031,
899
+ "rewards/accuracies": 0.875,
900
+ "rewards/chosen": -4.602609634399414,
901
+ "rewards/margins": 4.21354341506958,
902
+ "rewards/rejected": -8.816153526306152,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.42973785990545765,
907
+ "eval_logits/chosen": 2.0952131748199463,
908
+ "eval_logits/rejected": 2.1864659786224365,
909
+ "eval_logps/chosen": -3.392296075820923,
910
+ "eval_logps/rejected": -6.948195457458496,
911
+ "eval_loss": 0.33660775423049927,
912
+ "eval_rewards/accuracies": 0.9263157844543457,
913
+ "eval_rewards/chosen": -5.088444232940674,
914
+ "eval_rewards/margins": 5.3338494300842285,
915
+ "eval_rewards/rejected": -10.422293663024902,
916
+ "eval_runtime": 25.4226,
917
+ "eval_samples_per_second": 29.619,
918
+ "eval_steps_per_second": 3.737,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.4383326171035668,
923
+ "grad_norm": 2.563810348510742,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 2.950286388397217,
926
+ "logits/rejected": 2.619025945663452,
927
+ "logps/chosen": -3.237391710281372,
928
+ "logps/rejected": -5.953216552734375,
929
+ "loss": 0.318,
930
+ "rewards/accuracies": 0.9125000238418579,
931
+ "rewards/chosen": -4.856087684631348,
932
+ "rewards/margins": 4.073737144470215,
933
+ "rewards/rejected": -8.929824829101562,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.44692737430167595,
938
+ "grad_norm": 2.0339434146881104,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 2.987595558166504,
941
+ "logits/rejected": 2.6243975162506104,
942
+ "logps/chosen": -3.5633530616760254,
943
+ "logps/rejected": -7.0458879470825195,
944
+ "loss": 0.3053,
945
+ "rewards/accuracies": 0.8999999761581421,
946
+ "rewards/chosen": -5.345029354095459,
947
+ "rewards/margins": 5.223802089691162,
948
+ "rewards/rejected": -10.568831443786621,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.45552213149978515,
953
+ "grad_norm": 4.091029644012451,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 2.297576904296875,
956
+ "logits/rejected": 2.0218777656555176,
957
+ "logps/chosen": -3.297245502471924,
958
+ "logps/rejected": -6.101919651031494,
959
+ "loss": 0.3255,
960
+ "rewards/accuracies": 0.887499988079071,
961
+ "rewards/chosen": -4.945868015289307,
962
+ "rewards/margins": 4.207010746002197,
963
+ "rewards/rejected": -9.152878761291504,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.4641168886978943,
968
+ "grad_norm": 2.7896900177001953,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 2.103950023651123,
971
+ "logits/rejected": 1.9478647708892822,
972
+ "logps/chosen": -2.9360263347625732,
973
+ "logps/rejected": -6.406435489654541,
974
+ "loss": 0.3361,
975
+ "rewards/accuracies": 0.8999999761581421,
976
+ "rewards/chosen": -4.40403938293457,
977
+ "rewards/margins": 5.20561408996582,
978
+ "rewards/rejected": -9.60965347290039,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.47271164589600345,
983
+ "grad_norm": 2.657970905303955,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 2.1658639907836914,
986
+ "logits/rejected": 2.214900493621826,
987
+ "logps/chosen": -3.084073066711426,
988
+ "logps/rejected": -6.935500144958496,
989
+ "loss": 0.2928,
990
+ "rewards/accuracies": 0.862500011920929,
991
+ "rewards/chosen": -4.626110076904297,
992
+ "rewards/margins": 5.7771406173706055,
993
+ "rewards/rejected": -10.403249740600586,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.47271164589600345,
998
+ "eval_logits/chosen": 2.285294771194458,
999
+ "eval_logits/rejected": 2.3312103748321533,
1000
+ "eval_logps/chosen": -3.35794997215271,
1001
+ "eval_logps/rejected": -7.37537145614624,
1002
+ "eval_loss": 0.3121817409992218,
1003
+ "eval_rewards/accuracies": 0.9263157844543457,
1004
+ "eval_rewards/chosen": -5.036925792694092,
1005
+ "eval_rewards/margins": 6.026132106781006,
1006
+ "eval_rewards/rejected": -11.063057899475098,
1007
+ "eval_runtime": 25.4015,
1008
+ "eval_samples_per_second": 29.644,
1009
+ "eval_steps_per_second": 3.74,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.4813064030941126,
1014
+ "grad_norm": 2.940019369125366,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 1.9122416973114014,
1017
+ "logits/rejected": 1.9943454265594482,
1018
+ "logps/chosen": -3.27177095413208,
1019
+ "logps/rejected": -7.023342132568359,
1020
+ "loss": 0.3105,
1021
+ "rewards/accuracies": 0.925000011920929,
1022
+ "rewards/chosen": -4.907656669616699,
1023
+ "rewards/margins": 5.6273579597473145,
1024
+ "rewards/rejected": -10.535014152526855,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.48990116029222175,
1029
+ "grad_norm": 1.8887412548065186,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 2.274843692779541,
1032
+ "logits/rejected": 2.392199993133545,
1033
+ "logps/chosen": -3.383749008178711,
1034
+ "logps/rejected": -7.265415191650391,
1035
+ "loss": 0.3003,
1036
+ "rewards/accuracies": 0.9750000238418579,
1037
+ "rewards/chosen": -5.075623512268066,
1038
+ "rewards/margins": 5.8224992752075195,
1039
+ "rewards/rejected": -10.898123741149902,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.4984959174903309,
1044
+ "grad_norm": 1.6364414691925049,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 2.423910617828369,
1047
+ "logits/rejected": 2.244985818862915,
1048
+ "logps/chosen": -3.0959205627441406,
1049
+ "logps/rejected": -6.822405815124512,
1050
+ "loss": 0.2471,
1051
+ "rewards/accuracies": 0.9624999761581421,
1052
+ "rewards/chosen": -4.643880844116211,
1053
+ "rewards/margins": 5.58972692489624,
1054
+ "rewards/rejected": -10.233609199523926,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.50709067468844,
1059
+ "grad_norm": 2.6540188789367676,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 2.8146812915802,
1062
+ "logits/rejected": 2.5971922874450684,
1063
+ "logps/chosen": -4.139407157897949,
1064
+ "logps/rejected": -7.71649694442749,
1065
+ "loss": 0.2809,
1066
+ "rewards/accuracies": 0.9624999761581421,
1067
+ "rewards/chosen": -6.209111213684082,
1068
+ "rewards/margins": 5.365634441375732,
1069
+ "rewards/rejected": -11.574746131896973,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.5156854318865493,
1074
+ "grad_norm": 4.229885578155518,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 2.2735249996185303,
1077
+ "logits/rejected": 1.8577899932861328,
1078
+ "logps/chosen": -3.731342315673828,
1079
+ "logps/rejected": -7.2900390625,
1080
+ "loss": 0.2956,
1081
+ "rewards/accuracies": 0.887499988079071,
1082
+ "rewards/chosen": -5.5970139503479,
1083
+ "rewards/margins": 5.338044166564941,
1084
+ "rewards/rejected": -10.93505859375,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.5156854318865493,
1089
+ "eval_logits/chosen": 2.3333992958068848,
1090
+ "eval_logits/rejected": 2.529745578765869,
1091
+ "eval_logps/chosen": -3.679597854614258,
1092
+ "eval_logps/rejected": -7.917842864990234,
1093
+ "eval_loss": 0.3030374050140381,
1094
+ "eval_rewards/accuracies": 0.9263157844543457,
1095
+ "eval_rewards/chosen": -5.519396781921387,
1096
+ "eval_rewards/margins": 6.357367992401123,
1097
+ "eval_rewards/rejected": -11.876765251159668,
1098
+ "eval_runtime": 25.5622,
1099
+ "eval_samples_per_second": 29.458,
1100
+ "eval_steps_per_second": 3.716,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.5242801890846583,
1105
+ "grad_norm": 2.657008647918701,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 2.699007034301758,
1108
+ "logits/rejected": 2.731860876083374,
1109
+ "logps/chosen": -3.3311946392059326,
1110
+ "logps/rejected": -7.005735874176025,
1111
+ "loss": 0.2898,
1112
+ "rewards/accuracies": 0.9375,
1113
+ "rewards/chosen": -4.996791839599609,
1114
+ "rewards/margins": 5.511812686920166,
1115
+ "rewards/rejected": -10.508604049682617,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.5328749462827675,
1120
+ "grad_norm": 3.046638250350952,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 2.7617671489715576,
1123
+ "logits/rejected": 2.7338194847106934,
1124
+ "logps/chosen": -3.336381435394287,
1125
+ "logps/rejected": -7.058961391448975,
1126
+ "loss": 0.2895,
1127
+ "rewards/accuracies": 0.9375,
1128
+ "rewards/chosen": -5.004572868347168,
1129
+ "rewards/margins": 5.583868980407715,
1130
+ "rewards/rejected": -10.588441848754883,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.5414697034808766,
1135
+ "grad_norm": 2.342069387435913,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 2.5818216800689697,
1138
+ "logits/rejected": 1.987378716468811,
1139
+ "logps/chosen": -3.0970518589019775,
1140
+ "logps/rejected": -6.240235805511475,
1141
+ "loss": 0.2634,
1142
+ "rewards/accuracies": 0.949999988079071,
1143
+ "rewards/chosen": -4.645577430725098,
1144
+ "rewards/margins": 4.714776039123535,
1145
+ "rewards/rejected": -9.36035442352295,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.5500644606789858,
1150
+ "grad_norm": 1.9333513975143433,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 2.911674737930298,
1153
+ "logits/rejected": 2.7606472969055176,
1154
+ "logps/chosen": -3.2809441089630127,
1155
+ "logps/rejected": -7.210829257965088,
1156
+ "loss": 0.2594,
1157
+ "rewards/accuracies": 0.9375,
1158
+ "rewards/chosen": -4.921416282653809,
1159
+ "rewards/margins": 5.894827365875244,
1160
+ "rewards/rejected": -10.816244125366211,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.5586592178770949,
1165
+ "grad_norm": 5.659445285797119,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 2.4733409881591797,
1168
+ "logits/rejected": 2.102668285369873,
1169
+ "logps/chosen": -3.4448726177215576,
1170
+ "logps/rejected": -7.304962158203125,
1171
+ "loss": 0.2399,
1172
+ "rewards/accuracies": 0.9750000238418579,
1173
+ "rewards/chosen": -5.167309284210205,
1174
+ "rewards/margins": 5.790134429931641,
1175
+ "rewards/rejected": -10.957443237304688,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.5586592178770949,
1180
+ "eval_logits/chosen": 2.482032537460327,
1181
+ "eval_logits/rejected": 2.66147780418396,
1182
+ "eval_logps/chosen": -3.728013515472412,
1183
+ "eval_logps/rejected": -8.231985092163086,
1184
+ "eval_loss": 0.2814938426017761,
1185
+ "eval_rewards/accuracies": 0.9263157844543457,
1186
+ "eval_rewards/chosen": -5.592020511627197,
1187
+ "eval_rewards/margins": 6.75595760345459,
1188
+ "eval_rewards/rejected": -12.347977638244629,
1189
+ "eval_runtime": 25.4252,
1190
+ "eval_samples_per_second": 29.616,
1191
+ "eval_steps_per_second": 3.736,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.5672539750752041,
1196
+ "grad_norm": 2.189638137817383,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 2.875077962875366,
1199
+ "logits/rejected": 2.712646484375,
1200
+ "logps/chosen": -3.757338762283325,
1201
+ "logps/rejected": -6.6974897384643555,
1202
+ "loss": 0.2759,
1203
+ "rewards/accuracies": 0.887499988079071,
1204
+ "rewards/chosen": -5.636007785797119,
1205
+ "rewards/margins": 4.410226821899414,
1206
+ "rewards/rejected": -10.046236038208008,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.5758487322733132,
1211
+ "grad_norm": 3.5755774974823,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 2.9562981128692627,
1214
+ "logits/rejected": 2.7660539150238037,
1215
+ "logps/chosen": -3.2358715534210205,
1216
+ "logps/rejected": -6.90399169921875,
1217
+ "loss": 0.2586,
1218
+ "rewards/accuracies": 0.925000011920929,
1219
+ "rewards/chosen": -4.853806972503662,
1220
+ "rewards/margins": 5.502181053161621,
1221
+ "rewards/rejected": -10.355987548828125,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.5844434894714224,
1226
+ "grad_norm": 2.5616958141326904,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 2.5067126750946045,
1229
+ "logits/rejected": 2.3888354301452637,
1230
+ "logps/chosen": -3.462563991546631,
1231
+ "logps/rejected": -6.964964866638184,
1232
+ "loss": 0.251,
1233
+ "rewards/accuracies": 0.9125000238418579,
1234
+ "rewards/chosen": -5.193846225738525,
1235
+ "rewards/margins": 5.253602027893066,
1236
+ "rewards/rejected": -10.447446823120117,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.5930382466695315,
1241
+ "grad_norm": 2.964050531387329,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 2.659935474395752,
1244
+ "logits/rejected": 2.6573758125305176,
1245
+ "logps/chosen": -3.9107768535614014,
1246
+ "logps/rejected": -7.865903377532959,
1247
+ "loss": 0.2294,
1248
+ "rewards/accuracies": 0.9375,
1249
+ "rewards/chosen": -5.866166114807129,
1250
+ "rewards/margins": 5.9326887130737305,
1251
+ "rewards/rejected": -11.79885482788086,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.6016330038676407,
1256
+ "grad_norm": 4.389697551727295,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 2.217245578765869,
1259
+ "logits/rejected": 2.421597957611084,
1260
+ "logps/chosen": -4.029661655426025,
1261
+ "logps/rejected": -8.073125839233398,
1262
+ "loss": 0.2469,
1263
+ "rewards/accuracies": 0.9375,
1264
+ "rewards/chosen": -6.044493675231934,
1265
+ "rewards/margins": 6.065195083618164,
1266
+ "rewards/rejected": -12.109688758850098,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.6016330038676407,
1271
+ "eval_logits/chosen": 2.0770955085754395,
1272
+ "eval_logits/rejected": 2.3815462589263916,
1273
+ "eval_logps/chosen": -3.924149751663208,
1274
+ "eval_logps/rejected": -8.844257354736328,
1275
+ "eval_loss": 0.2584603726863861,
1276
+ "eval_rewards/accuracies": 0.9263157844543457,
1277
+ "eval_rewards/chosen": -5.886224746704102,
1278
+ "eval_rewards/margins": 7.380159854888916,
1279
+ "eval_rewards/rejected": -13.26638412475586,
1280
+ "eval_runtime": 25.4228,
1281
+ "eval_samples_per_second": 29.619,
1282
+ "eval_steps_per_second": 3.737,
1283
+ "step": 700
1284
+ }
1285
+ ],
1286
+ "logging_steps": 10,
1287
+ "max_steps": 1500,
1288
+ "num_input_tokens_seen": 0,
1289
+ "num_train_epochs": 2,
1290
+ "save_steps": 50,
1291
+ "stateful_callbacks": {
1292
+ "TrainerControl": {
1293
+ "args": {
1294
+ "should_epoch_stop": false,
1295
+ "should_evaluate": false,
1296
+ "should_log": false,
1297
+ "should_save": true,
1298
+ "should_training_stop": false
1299
+ },
1300
+ "attributes": {}
1301
+ }
1302
+ },
1303
+ "total_flos": 1.6109508100557373e+18,
1304
+ "train_batch_size": 1,
1305
+ "trial_name": null,
1306
+ "trial_params": null
1307
+ }
checkpoint-700/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e56bd7e0b9c14ab415ac512838b27c755a593199eea9fac203b4183c2cbca02
3
+ size 7224
checkpoint-700/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)