asofter commited on
Commit
c70ac94
·
verified ·
1 Parent(s): 02987f0

End of training

Browse files
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - recall
9
+ - precision
10
+ - f1
11
+ model-index:
12
+ - name: deberta-v3-base-prompt-injection-v2-2024-04-20-16-52
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # deberta-v3-base-prompt-injection-v2-2024-04-20-16-52
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0036
24
+ - Accuracy: 0.9993
25
+ - Recall: 0.9994
26
+ - Precision: 0.9992
27
+ - F1: 0.9993
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 64
49
+ - seed: 49994
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.06
53
+ - num_epochs: 3
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
59
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
+ | 0.0079 | 1.0 | 7711 | 0.0052 | 0.9988 | 0.9982 | 0.9994 | 0.9988 |
61
+ | 0.0026 | 2.0 | 15422 | 0.0052 | 0.9987 | 0.9988 | 0.9987 | 0.9988 |
62
+ | 0.0004 | 3.0 | 23133 | 0.0063 | 0.9990 | 0.9989 | 0.9992 | 0.9990 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.39.3
68
+ - Pytorch 2.2.2+cu121
69
+ - Datasets 2.18.0
70
+ - Tokenizers 0.15.2
deberta-v3-base-prompt-injection-v2_emissions.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2024-04-21T01:05:57,deberta-v3-base-prompt-injection-v2_emissions,be24c49c-34fd-4330-8fae-045ee195f602,29613.912818193436,0.7573653175770764,2.557464534412304e-05,42.5,66.53002163649536,5.78702974319458,0.34960826874391937,1.6545413322431202,0.04758375938084103,2.051733360367884,United States,USA,virginia,,,Linux-5.10.213-201.855.amzn2.x86_64-x86_64-with-glibc2.26,3.10.9,2.3.5,4,AMD EPYC 7R32,1,1 x NVIDIA A10G,-77.2481,38.6583,15.432079315185547,machine,N,1.0