--- library_name: peft license: mit base_model: unsloth/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 6c664962-080f-4474-9e63-7bbb50546d6b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3-mini-4k-instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5fd5cd3787556e48_train_data.json ds_type: json format: custom path: /workspace/input_data/5fd5cd3787556e48_train_data.json type: field_instruction: title_main field_output: texte format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/6c664962-080f-4474-9e63-7bbb50546d6b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/5fd5cd3787556e48_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 62f1a86a-a42c-42e1-ab5f-e1ce0543f68b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 62f1a86a-a42c-42e1-ab5f-e1ce0543f68b warmup_steps: 20 weight_decay: 0.0 xformers_attention: null ```

# 6c664962-080f-4474-9e63-7bbb50546d6b This model is a fine-tuned version of [unsloth/Phi-3-mini-4k-instruct](https://huggingface.co/unsloth/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.3726 | 0.0066 | 1 | 1.6258 | | 4.6552 | 0.3306 | 50 | 1.1729 | | 4.8292 | 0.6612 | 100 | 1.0881 | | 4.5333 | 0.9917 | 150 | 1.0584 | | 4.4521 | 1.3223 | 200 | 1.0478 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1