update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/mt5-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
- bleu
|
9 |
+
model-index:
|
10 |
+
- name: mt5-small_large_lr
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# mt5-small_large_lr
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9688
|
22 |
+
- Rouge1: 38.8633
|
23 |
+
- Rouge2: 33.0802
|
24 |
+
- Rougel: 37.6956
|
25 |
+
- Rougelsum: 37.7116
|
26 |
+
- Bleu: 26.6301
|
27 |
+
- Gen Len: 11.5566
|
28 |
+
- Meteor: 0.3519
|
29 |
+
- No ans accuracy: 22.99
|
30 |
+
- Av cosine sim: 0.6861
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.005
|
50 |
+
- train_batch_size: 16
|
51 |
+
- eval_batch_size: 16
|
52 |
+
- seed: 9
|
53 |
+
- gradient_accumulation_steps: 8
|
54 |
+
- total_train_batch_size: 128
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 20
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | Meteor | No ans accuracy | Av cosine sim |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:------:|:---------------:|:-------------:|
|
63 |
+
| 5.4434 | 1.0 | 175 | 2.1918 | 1.8449 | 1.2024 | 1.7039 | 1.7116 | 0.0 | 2.7672 | 0.0145 | 28.9700 | 0.1363 |
|
64 |
+
| 1.8436 | 1.99 | 350 | 1.1852 | 33.6062 | 26.8725 | 32.2258 | 32.241 | 20.3395 | 12.2528 | 0.2957 | 17.3800 | 0.636 |
|
65 |
+
| 1.2276 | 2.99 | 525 | 1.0630 | 33.186 | 27.4949 | 32.0715 | 32.0522 | 20.3232 | 11.0301 | 0.2957 | 21.18 | 0.6109 |
|
66 |
+
| 0.9589 | 3.98 | 700 | 1.0083 | 40.265 | 33.6652 | 38.9503 | 38.9661 | 28.0884 | 12.8545 | 0.3623 | 17.54 | 0.7157 |
|
67 |
+
| 0.7931 | 4.98 | 875 | 0.9682 | 37.9437 | 31.7611 | 36.7618 | 36.7671 | 25.7738 | 12.0286 | 0.3424 | 20.66 | 0.6825 |
|
68 |
+
| 0.6686 | 5.97 | 1050 | 0.9601 | 37.5742 | 31.9098 | 36.4225 | 36.4381 | 24.9584 | 11.4169 | 0.3398 | 22.56 | 0.6713 |
|
69 |
+
| 0.5686 | 6.97 | 1225 | 0.9620 | 43.1436 | 36.6363 | 41.7279 | 41.7571 | 32.4301 | 13.6142 | 0.3893 | 16.9400 | 0.757 |
|
70 |
+
| 0.4939 | 7.96 | 1400 | 0.9688 | 38.8633 | 33.0802 | 37.6956 | 37.7116 | 26.6301 | 11.5566 | 0.3519 | 22.99 | 0.6861 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.31.0
|
76 |
+
- Pytorch 2.0.1+cu118
|
77 |
+
- Datasets 2.13.1
|
78 |
+
- Tokenizers 0.13.3
|