--- license: apache-2.0 base_model: google/bigbird-roberta-base tags: - eduscore - data filter inference: false datasets: - HuggingFaceFW/fineweb-edu-llama3-annotations language: - en --- [Visualize in Weights & Biases](https://wandb.ai/pszemraj/eduscore-regression/runs/04oc07hx) # bigbird-roberta-base: eduscore Similar to the [original](https://hf.co/HuggingFaceFW/fineweb-edu-classifier), this model predicts a score of 0 to 5 on 'educational quality' of some text. This model was fine-tuned @ its max context length of 4096 tokens. ## Usage Note this is for CPU, for GPU you will need to make some (small) changes. ```py # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification model_name = "pszemraj/bigbird-roberta-base-edu-classifier" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained( model_name, attn_implementation="eager" ) text = "This is a test sentence." inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = { "text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } print(result) # {'text': 'This is a test sentence.', 'score': 0.20170727372169495, 'int_score': 0} ``` ## Details This model is a fine-tuned version of [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. It achieves the following results on the evaluation set: - Loss: 0.2176 - Mse: 0.2176 ## Intended uses & limitations Refer to the hf classifier's [model card](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier#limitations) for more details ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 90085 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0