--- license: apache-2.0 base_model: facebook/convnextv2-nano-22k-384 tags: - image-classification - vision - boulderspot - climbing - aerial imagery - remote sensing - bouldering metrics: - accuracy - f1 - precision - recall - matthews_correlation datasets: - pszemraj/boulderspot --- # convnextv2-nano-22k-384-boulderspot This is a model fine-tuned to classify whether an aerial/satellite image contains a climbing area or not. You can find some images to test inference with [in this old repo from the original project](https://github.com/pszemraj/BoulderAreaDetector/tree/cbb22bdb3373b4b72d798dedfcb28543c0dc769d/test_images) ## Model description This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co/facebook/convnextv2-nano-22k-384) on the pszemraj/boulderspot dataset. It achieves the following results on the evaluation set: - Loss: 0.0340 - Accuracy: 0.9883 - F1: 0.9883 - Precision: 0.9883 - Recall: 0.9883 - Matthews Correlation: 0.8962 ## example usage ```py import requests from PIL import Image from transformers import pipeline pipe = pipeline( "image-classification", model="pszemraj/convnextv2-nano-22k-384-boulderspot", ) url = "https://huggingface.co/pszemraj/convnextv2-nano-22k-384-boulderspot/resolve/main/test_img_magic_wood.png?download=true" image = Image.open(requests.get(url, stream=True).raw) result = pipe(image)[0] print(result) # image.show() ``` ## Intended uses & limitations Classification of aerial/satellite imagery, ideally with spacial resolution 10-25 cm (_i.e. for 10 cm, each pixel in the image corresonds to approx. 10 cm x 10 cm area on the ground_). It may be suitable outside of that, but should be validated as other resolutions were not present in the training data. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 7890 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------:| | 0.1102 | 1.0 | 203 | 0.0431 | 0.9839 | 0.9840 | 0.9841 | 0.9839 | 0.8590 | | 0.0559 | 2.0 | 406 | 0.0476 | 0.9839 | 0.9845 | 0.9858 | 0.9839 | 0.8709 | | 0.0402 | 3.0 | 609 | 0.0464 | 0.9810 | 0.9817 | 0.9831 | 0.9810 | 0.8468 | | 0.0334 | 4.0 | 813 | 0.0348 | 0.9868 | 0.9869 | 0.9870 | 0.9868 | 0.8846 | | 0.0445 | 4.99 | 1015 | 0.0340 | 0.9883 | 0.9883 | 0.9883 | 0.9883 | 0.8962 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.4.0.dev20240328+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2