--- license: apache-2.0 pipeline_tag: text-generation tags: - multilingual - PyTorch - Transformers - gpt3 - gpt2 - Deepspeed - Megatron - mGPT datasets: - mc4 - Wikipedia widget: - text: "Ich weiß, dass du müde bist, aber können wir heute Abend noch einen Spaziergang machen? peter szemraj: ich" example_title: "walk - Deutsch" - text: "peter szemraj: 我喜欢穿很酷的衣服" example_title: "fashion - Chinese" - text: "Wat zei je over mijn moeder? peter szemraj: ik" example_title: "🚎 - Dutch" - text: "Zagadka: Człowiekowi, który przebywał na dworze w deszczu bez parasola czy kapelusza, nie zmoczył się ani jeden włos na głowie. Dlaczego? peter szemraj: czy to" example_title: "brain teaser - Polish" - text: "Minha amiga diz que conhece todas as línguas, mas não fala nenhuma delas... o que há de errado com ela? peter szemraj: eu" example_title: "language - Portuguese" - text: "se potesse vivere ovunque, dove sarebbe? peter szemraj: io" example_title: "dream living place - Italian" - text: "Can you take me for dinner somewhere nice this time? peter szemraj:" example_title: "dinner" - text: "What really makes you angry? peter szemraj:" example_title: "pet peeve" - text: "Jak nazwać aligatora, który właśnie przeszedł operację usunięcia lewego ramienia?peter szemraj: ja" example_title: "alligator - Polish" - text: "Warum sind Transformers für die Sprachmodellierung wichtig? peter szemraj: es ist" example_title: "Transformers - German" - text: "как написать хорошие подсказки для языковых моделей? peter szemraj: сначала вам нужно" example_title: "prompt tutorial - Russian" - text: "Pewien mężczyzna wpycha swój samochód do hotelu i mówi właścicielowi, że jest bankrutem. Dlaczego? peter szemraj: może" example_title: "brain teaser - Polish 2" - text: "Zagadka: Mówię bez ust i słyszę bez uszu. Nie mam ciała, ale ożywiam się wraz z wiatrem. Czym jestem? peter szemraj: czy to" example_title: "brain teaser - Polish 3" - text: "Què t'agrada fer per divertir-te? peter szemraj: m'agrada" example_title: "hobbies - Catalan" - text: "为什么你总是那么累?peter szemraj: 呃,我想" example_title: "tired - Chinese" inference: parameters: min_length: 2 max_length: 64 do_sample: True top_k: 10 top_p: 0.9 temperature: 0.65 repetition_penalty: 3.5 no_repeat_ngram_size: 3 length_penalty: 0.4 pad_token: 1 --- # mGPT: fine-tune on message data - 2E - This model is a fine-tuned version of [sberbank-ai/mGPT](https://huggingface.co/sberbank-ai/mGPT) on 80k messages. This builds on the minimum-working-example checkpoint [here](https://huggingface.co/pszemraj/mGPT-Peter-mwe). - 2E = 2 epochs ## Model description - testing if fine-tuned personality data bleeds over to other languages without being trained in them explicitly **Interesting findings thus far:** - Passing a generic word after the `` that is in a non-English language helps ensure the model responds in the question language (see: any example). - Model generations (in general) remain semantically consistent, even if the generations switch from ``to English in the middle of the generated text. This demonstrates some sort of "universal concept understanding" ### Usage in python Install the transformers library if you don't have it: ``` pip install -U transformers ``` load the model into a pipeline object: ``` from transformers import pipeline import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' my_chatbot = pipeline('text-generation', 'pszemraj/mGPT-Peter-2E', device=0 if device == 'cuda' else -1, ) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 (in addition to all training on prior checkpoints) ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1