--- base_model: microsoft/mpnet-base tags: - generated_from_trainer model-index: - name: mpnet-base-fineweb-edu-llama3-annotations-512-vN results: [] --- [Visualize in Weights & Biases](https://wandb.ai/pszemraj/eduscore-regression/runs/k2lc9nx3) # mpnet-base-fineweb-edu-llama3-annotations-512-vN This model is a fine-tuned version of [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. It achieves the following results on the evaluation set: - Loss: 0.2105 - Mse: 0.2105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 90085 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.5887 | 0.0288 | 100 | 0.6419 | 0.6419 | | 0.371 | 0.0577 | 200 | 0.3439 | 0.3439 | | 0.3607 | 0.0865 | 300 | 0.2844 | 0.2844 | | 0.2576 | 0.1153 | 400 | 0.2589 | 0.2589 | | 0.2822 | 0.1441 | 500 | 0.2707 | 0.2707 | | 0.2908 | 0.1730 | 600 | 0.2382 | 0.2382 | | 0.2258 | 0.2018 | 700 | 0.2405 | 0.2405 | | 0.2604 | 0.2306 | 800 | 0.2318 | 0.2318 | | 0.2961 | 0.2594 | 900 | 0.2186 | 0.2186 | | 0.2453 | 0.2883 | 1000 | 0.2168 | 0.2168 | | 0.278 | 0.3171 | 1100 | 0.2247 | 0.2247 | | 0.2319 | 0.3459 | 1200 | 0.2142 | 0.2142 | | 0.1983 | 0.3747 | 1300 | 0.2175 | 0.2175 | | 0.2264 | 0.4036 | 1400 | 0.2306 | 0.2306 | | 0.2175 | 0.4324 | 1500 | 0.2375 | 0.2375 | | 0.2461 | 0.4612 | 1600 | 0.2493 | 0.2493 | | 0.2419 | 0.4900 | 1700 | 0.2234 | 0.2234 | | 0.2411 | 0.5189 | 1800 | 0.2137 | 0.2137 | | 0.2473 | 0.5477 | 1900 | 0.2140 | 0.2140 | | 0.237 | 0.5765 | 2000 | 0.2177 | 0.2177 | | 0.1972 | 0.6053 | 2100 | 0.2186 | 0.2186 | | 0.2556 | 0.6342 | 2200 | 0.2416 | 0.2416 | | 0.2273 | 0.6630 | 2300 | 0.2197 | 0.2197 | | 0.223 | 0.6918 | 2400 | 0.2253 | 0.2253 | | 0.2028 | 0.7206 | 2500 | 0.2239 | 0.2239 | | 0.2322 | 0.7495 | 2600 | 0.2180 | 0.2180 | | 0.1933 | 0.7783 | 2700 | 0.2158 | 0.2158 | | 0.2085 | 0.8071 | 2800 | 0.2298 | 0.2298 | | 0.2038 | 0.8359 | 2900 | 0.2166 | 0.2166 | | 0.2158 | 0.8648 | 3000 | 0.2084 | 0.2084 | | 0.2197 | 0.8936 | 3100 | 0.2145 | 0.2145 | | 0.2397 | 0.9224 | 3200 | 0.2163 | 0.2163 | | 0.2307 | 0.9512 | 3300 | 0.2160 | 0.2160 | | 0.2099 | 0.9801 | 3400 | 0.2101 | 0.2101 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1