--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: - pt --- # mteb-pt/average_pt_nilc_fasttext_skip_s1000 This is an adaptation of pre-trained Portuguese fastText Word Embeddings to a [sentence-transformers](https://www.SBERT.net) model. The original pre-trained word embeddings can be found at: [http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc](http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc). This model maps sentences & paragraphs to a 1000 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('mteb-pt/average_pt_nilc_fasttext_skip_s1000') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Portuguese MTEB Leaderboard*: [mteb-pt/leaderboard](https://huggingface.co/spaces/mteb-pt/leaderboard) ## Full Model Architecture ``` SentenceTransformer( (0): WordEmbeddings( (emb_layer): Embedding(929606, 1000) ) (1): Pooling({'word_embedding_dimension': 1000, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors ```bibtex @inproceedings{hartmann2017portuguese, title = {Portuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks}, author = {Hartmann, Nathan S and Fonseca, Erick R and Shulby, Christopher D and Treviso, Marcos V and Rodrigues, J{'{e}}ssica S and Alu{'{\i}}sio, Sandra Maria}, year = {2017}, publisher = {SBC}, booktitle = {Brazilian Symposium in Information and Human Language Technology - STIL}, url = {https://sol.sbc.org.br/index.php/stil/article/view/4008} } ```