eduagarcia
commited on
Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 0_WordEmbeddings/pytorch_model.bin +3 -0
- 0_WordEmbeddings/whitespacetokenizer_config.json +3 -0
- 0_WordEmbeddings/wordembedding_config.json +5 -0
- 1_Pooling/config.json +10 -0
- README.md +69 -0
- config_sentence_transformers.json +9 -0
- modules.json +14 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
0_WordEmbeddings/whitespacetokenizer_config.json filter=lfs diff=lfs merge=lfs -text
|
0_WordEmbeddings/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89f869cbc627442bce1b5a593c7d65f8198eff5b8bc85613a6ae28efeb076b47
|
3 |
+
size 3718429306
|
0_WordEmbeddings/whitespacetokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae9ac6a89dc3fa5345f72ca5b07db180ea004b69cac780e4afec9e36bd5b1ffd
|
3 |
+
size 12971116
|
0_WordEmbeddings/wordembedding_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "sentence_transformers.models.tokenizer.WhitespaceTokenizer.WhitespaceTokenizer",
|
3 |
+
"update_embeddings": false,
|
4 |
+
"max_seq_length": 1000000
|
5 |
+
}
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1000,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
language:
|
9 |
+
- pt
|
10 |
+
---
|
11 |
+
|
12 |
+
# mteb-pt/average_pt_nilc_wang2vec_skip_s1000
|
13 |
+
|
14 |
+
This is an adaptation of pre-trained Portuguese Wang2Vec Word Embeddings to a [sentence-transformers](https://www.SBERT.net) model.
|
15 |
+
|
16 |
+
The original pre-trained word embeddings can be found at: [http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc](http://nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc).
|
17 |
+
|
18 |
+
This model maps sentences & paragraphs to a 1000 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
+
|
20 |
+
## Usage (Sentence-Transformers)
|
21 |
+
|
22 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
23 |
+
|
24 |
+
```
|
25 |
+
pip install -U sentence-transformers
|
26 |
+
```
|
27 |
+
|
28 |
+
Then you can use the model like this:
|
29 |
+
|
30 |
+
```python
|
31 |
+
from sentence_transformers import SentenceTransformer
|
32 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
33 |
+
|
34 |
+
model = SentenceTransformer('mteb-pt/average_pt_nilc_wang2vec_skip_s1000')
|
35 |
+
embeddings = model.encode(sentences)
|
36 |
+
print(embeddings)
|
37 |
+
```
|
38 |
+
|
39 |
+
## Evaluation Results
|
40 |
+
|
41 |
+
For an automated evaluation of this model, see the *Portuguese MTEB Leaderboard*: [mteb-pt/leaderboard](https://huggingface.co/spaces/mteb-pt/leaderboard)
|
42 |
+
|
43 |
+
## Full Model Architecture
|
44 |
+
```
|
45 |
+
SentenceTransformer(
|
46 |
+
(0): WordEmbeddings(
|
47 |
+
(emb_layer): Embedding(929607, 1000)
|
48 |
+
)
|
49 |
+
(1): Pooling({'word_embedding_dimension': 1000, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
50 |
+
)
|
51 |
+
```
|
52 |
+
|
53 |
+
## Citing & Authors
|
54 |
+
|
55 |
+
```bibtex
|
56 |
+
@inproceedings{hartmann2017portuguese,
|
57 |
+
title = {Portuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks},
|
58 |
+
author = {Hartmann, Nathan S and
|
59 |
+
Fonseca, Erick R and
|
60 |
+
Shulby, Christopher D and
|
61 |
+
Treviso, Marcos V and
|
62 |
+
Rodrigues, J{'{e}}ssica S and
|
63 |
+
Alu{'{\i}}sio, Sandra Maria},
|
64 |
+
year = {2017},
|
65 |
+
publisher = {SBC},
|
66 |
+
booktitle = {Brazilian Symposium in Information and Human Language Technology - STIL},
|
67 |
+
url = {https://sol.sbc.org.br/index.php/stil/article/view/4008}
|
68 |
+
}
|
69 |
+
```
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.6.1",
|
4 |
+
"transformers": "4.39.0.dev0",
|
5 |
+
"pytorch": "2.2.2"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "0_WordEmbeddings",
|
6 |
+
"type": "sentence_transformers.models.WordEmbeddings"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|