File size: 2,161 Bytes
cdb3b0d 9098175 cdb3b0d 9098175 cdb3b0d 9098175 cdb3b0d 9098175 cdb3b0d 9098175 cdb3b0d 9098175 cdb3b0d f2b4ac4 cdb3b0d 365d99c 6917d28 d66980d cdb3b0d 9098175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
base_model: Distilbert-finetuned-emotion
tags:
- generated_from_trainer
- Pytorch
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: Distilbert-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9235
- name: F1
type: f1
value: 0.923296474937779
language:
- en
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Distilbert-finetuned-emotion
Distilbert is a variant of bert model(one of LLM models). This model with a classification head is used to classify the emotions of the input tweet.
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2195
- Accuracy: 0.9235
- F1: 0.9233
## Emotion Labels
- **label_0:** Sadness
- **label_1:** Joy
- **label_2:** Love
- **label_3:** Anger
- **label_4:** Fear
- **label_5:** Surprise
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8537 | 1.0 | 250 | 0.3235 | 0.897 | 0.8958 |
| 0.2506 | 2.0 | 500 | 0.2195 | 0.9235 | 0.9233 |
### Validation metrics
- test_loss : 0.2194512039422989
- test_accuracy : 0.9235
- test_f1 : 0.923296474937779
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 |