--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer - Pytorch datasets: - emotion metrics: - accuracy - f1 model-index: - name: Distilbert-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.923296474937779 language: - en --- # Distilbert-finetuned-emotion Distilbert is a variant of bert model(one of LLM models). This model with a classification head is used to classify the emotions of the input tweet. This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2195 - Accuracy: 0.9235 - F1: 0.9233 ## Emotion Labels - **label_0:** Sadness - **label_1:** Joy - **label_2:** Love - **label_3:** Anger - **label_4:** Fear - **label_5:** Surprise ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8537 | 1.0 | 250 | 0.3235 | 0.897 | 0.8958 | | 0.2506 | 2.0 | 500 | 0.2195 | 0.9235 | 0.9233 | ### Validation metrics - test_loss : 0.2194512039422989 - test_accuracy : 0.9235 - test_f1 : 0.923296474937779 ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1