File size: 4,171 Bytes
a1f33fe 144e854 a1f33fe 015ee18 a1f33fe 015ee18 a1f33fe 015ee18 a1f33fe bcce228 015ee18 a1f33fe 14d92fc a1f33fe a6a4660 a1f33fe bcce228 a1f33fe 744d873 a1f33fe bcce228 a1f33fe bcce228 a1f33fe bcce228 a1f33fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
language: ja
license: cc-by-sa-4.0
datasets:
- YACIS corpus
- Harmful BBS Japanese comments dataset
- Twitter Japanese cyberbullying dataset
---
# yacis-electra-small-cyberbullying
This is an [ELECTRA](https://github.com/google-research/electra) Small model for the Japanese language finetuned for automatic cyberbullying detection.
The original foundation model was originally pretrained on 5.6 billion words [YACIS](https://github.com/ptaszynski/yacis-corpus) blog corpus, and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset".
## Model architecture
The original model was pretrained using ELECTRA Small model settings and can be found here:
[https://huggingface.co/ptaszynski/yacis-electra-small-japanese](https://huggingface.co/ptaszynski/yacis-electra-small-japanese)
## Licenses
The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License.
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a>
## Citations
Please, cite this model using the following citation.
```
@inproceedings{shibata2022yacis-electra,
title={日本語大規模ブログコーパスYACISに基づいたELECTRA事前学習済み言語モデルの作成及び性能評価},
% title={Development and performance evaluation of ELECTRA pretrained language model based on YACIS large-scale Japanese blog corpus [in Japanese]}, %% for English citations
author={柴田 祥伍 and プタシンスキ ミハウ and エロネン ユーソ and ノヴァコフスキ カロル and 桝井 文人},
% author={Shibata, Shogo and Ptaszynski, Michal and Eronen, Juuso and Nowakowski, Karol and Masui, Fumito}, %% for English citations
booktitle={言語処理学会第28回年次大会(NLP2022) (予定)},
% booktitle={Proceedings of The 28th Annual Meeting of The Association for Natural Language Processing (NLP2022)}, %% for English citations
pages={1--4},
year={2022}
}
```
The two datasets used for finetuning should be cited using the following references.
- Harmful BBS Japanese comments dataset:
```
@book{ptaszynski2018automatic,
title={Automatic Cyberbullying Detection: Emerging Research and Opportunities: Emerging Research and Opportunities},
author={Ptaszynski, Michal E and Masui, Fumito},
year={2018},
publisher={IGI Global}
}
```
```
@article{松葉達明2009学校非公式サイトにおける有害情報検出,
title={学校非公式サイトにおける有害情報検出},
author={松葉達明 and 里見尚宏 and 桝井文人 and 河合敦夫 and 井須尚紀},
journal={電子情報通信学会技術研究報告. NLC, 言語理解とコミュニケーション},
volume={109},
number={142},
pages={93--98},
year={2009},
publisher={一般社団法人電子情報通信学会}
}
```
- Twitter Japanese cyberbullying dataset:
```
TBA
```
The pretraining was done using YACIS corpus, which should be cited using at least one of the following references.
```
@inproceedings{ptaszynski2012yacis,
title={YACIS: A five-billion-word corpus of Japanese blogs fully annotated with syntactic and affective information},
author={Ptaszynski, Michal and Dybala, Pawel and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio},
booktitle={Proceedings of the AISB/IACAP world congress},
pages={40--49},
year={2012},
howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}"
}
```
```
@article{ptaszynski2014automatically,
title={Automatically annotating a five-billion-word corpus of Japanese blogs for sentiment and affect analysis},
author={Ptaszynski, Michal and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio},
journal={Computer Speech \& Language},
volume={28},
number={1},
pages={38--55},
year={2014},
publisher={Elsevier},
howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}"
}
``` |