--- license: llama2 library_name: peft tags: - axolotl - generated_from_trainer base_model: codellama/CodeLlama-7b-hf model-index: - name: EvolCodeLlama-7b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: codellama/CodeLlama-7b-hf base_model_config: codellama/CodeLlama-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true hub_model_id: EvolCodeLlama-7b load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ptoro/Evol-Instruct-Python-1k-testing type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.02 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: axolotl wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_steps: 0.01 save_strategy: epoch save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# EvolCodeLlama-7b This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3627 | 0.01 | 1 | 0.5027 | | 0.3412 | 0.03 | 4 | 0.5026 | | 0.3806 | 0.07 | 8 | 0.5023 | | 0.392 | 0.1 | 12 | 0.5018 | | 0.4141 | 0.14 | 16 | 0.4999 | | 0.3433 | 0.17 | 20 | 0.4954 | | 0.3702 | 0.21 | 24 | 0.4851 | | 0.2948 | 0.24 | 28 | 0.4682 | | 0.3387 | 0.28 | 32 | 0.4499 | | 0.2437 | 0.31 | 36 | 0.4331 | | 0.2526 | 0.35 | 40 | 0.4221 | | 0.2721 | 0.38 | 44 | 0.4146 | | 0.2292 | 0.42 | 48 | 0.4089 | | 0.1986 | 0.45 | 52 | 0.4028 | | 0.3258 | 0.48 | 56 | 0.3983 | | 0.3509 | 0.52 | 60 | 0.3950 | | 0.2697 | 0.55 | 64 | 0.3926 | | 0.2646 | 0.59 | 68 | 0.3907 | | 0.3979 | 0.62 | 72 | 0.3900 | | 0.2737 | 0.66 | 76 | 0.3880 | | 0.2271 | 0.69 | 80 | 0.3865 | | 0.247 | 0.73 | 84 | 0.3847 | | 0.3112 | 0.76 | 88 | 0.3824 | | 0.2724 | 0.8 | 92 | 0.3820 | | 0.207 | 0.83 | 96 | 0.3814 | | 0.3492 | 0.87 | 100 | 0.3810 | | 0.2474 | 0.9 | 104 | 0.3802 | | 0.4037 | 0.94 | 108 | 0.3785 | | 0.2295 | 0.97 | 112 | 0.3773 | | 0.2689 | 1.0 | 116 | 0.3760 | | 0.2546 | 1.02 | 120 | 0.3753 | | 0.1916 | 1.05 | 124 | 0.3768 | | 0.2458 | 1.09 | 128 | 0.3758 | | 0.2155 | 1.12 | 132 | 0.3768 | | 0.2341 | 1.16 | 136 | 0.3773 | | 0.1909 | 1.19 | 140 | 0.3793 | | 0.1911 | 1.23 | 144 | 0.3759 | | 0.2096 | 1.26 | 148 | 0.3761 | | 0.2353 | 1.29 | 152 | 0.3772 | | 0.2606 | 1.33 | 156 | 0.3773 | | 0.1485 | 1.36 | 160 | 0.3778 | | 0.1807 | 1.4 | 164 | 0.3749 | | 0.2294 | 1.43 | 168 | 0.3770 | | 0.216 | 1.47 | 172 | 0.3759 | | 0.1791 | 1.5 | 176 | 0.3727 | | 0.2605 | 1.54 | 180 | 0.3733 | | 0.2838 | 1.57 | 184 | 0.3738 | | 0.2632 | 1.61 | 188 | 0.3694 | | 0.1839 | 1.64 | 192 | 0.3686 | | 0.1939 | 1.68 | 196 | 0.3690 | | 0.2413 | 1.71 | 200 | 0.3699 | | 0.1494 | 1.74 | 204 | 0.3689 | | 0.2782 | 1.78 | 208 | 0.3695 | | 0.2314 | 1.81 | 212 | 0.3696 | | 0.2499 | 1.85 | 216 | 0.3691 | | 0.1976 | 1.88 | 220 | 0.3672 | | 0.2587 | 1.92 | 224 | 0.3660 | | 0.2598 | 1.95 | 228 | 0.3658 | | 0.2686 | 1.99 | 232 | 0.3666 | | 0.216 | 2.01 | 236 | 0.3673 | | 0.1261 | 2.04 | 240 | 0.3723 | | 0.1938 | 2.08 | 244 | 0.3811 | | 0.1906 | 2.11 | 248 | 0.3869 | | 0.1375 | 2.15 | 252 | 0.3829 | | 0.228 | 2.18 | 256 | 0.3796 | | 0.2524 | 2.22 | 260 | 0.3789 | | 0.118 | 2.25 | 264 | 0.3809 | | 0.2224 | 2.29 | 268 | 0.3834 | | 0.1477 | 2.32 | 272 | 0.3847 | | 0.2095 | 2.35 | 276 | 0.3849 | | 0.1919 | 2.39 | 280 | 0.3820 | | 0.1916 | 2.42 | 284 | 0.3804 | | 0.1625 | 2.46 | 288 | 0.3788 | | 0.2054 | 2.49 | 292 | 0.3794 | | 0.1605 | 2.53 | 296 | 0.3810 | | 0.1564 | 2.56 | 300 | 0.3819 | | 0.196 | 2.6 | 304 | 0.3822 | | 0.1975 | 2.63 | 308 | 0.3830 | | 0.1406 | 2.67 | 312 | 0.3833 | | 0.2754 | 2.7 | 316 | 0.3830 | | 0.1544 | 2.74 | 320 | 0.3829 | | 0.1733 | 2.77 | 324 | 0.3830 | | 0.1862 | 2.81 | 328 | 0.3832 | | 0.1634 | 2.84 | 332 | 0.3829 | | 0.1966 | 2.87 | 336 | 0.3830 | | 0.1306 | 2.91 | 340 | 0.3831 | | 0.1444 | 2.94 | 344 | 0.3828 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0