--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - generated_from_trainer model-index: - name: outputs/rosie-phi-3 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: microsoft/Phi-3-mini-4k-instruct trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ptoro/honkers-phi type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/rosie-phi-3 sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: axolotl-june wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_torch adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.000003 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: True early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: resize_token_embeddings_to_32x: true special_tokens: pad_token: "<|endoftext|>" ```

# outputs/rosie-phi-3 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.5549 | 0.0004 | 1 | 7.5396 | | 2.0538 | 0.25 | 703 | 5.0590 | | 3.6188 | 0.5 | 1406 | 4.4457 | | 2.8575 | 0.75 | 2109 | 4.2136 | | 2.8208 | 1.0 | 2812 | 4.1741 | ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1