|
import os
|
|
import argparse
|
|
from datetime import datetime
|
|
|
|
from flair.data import Corpus
|
|
from flair.models import SequenceTagger
|
|
from flair.trainers import ModelTrainer
|
|
from flair.datasets import UniversalDependenciesCorpus
|
|
from flair.embeddings import WordEmbeddings, StackedEmbeddings
|
|
|
|
parser = argparse.ArgumentParser(description='Flair Training Part-of-speech tagging')
|
|
parser.add_argument('-output', type=str, default="models/", help='The output directory')
|
|
parser.add_argument('-epochs', type=int, default=1, help='Number of Epochs')
|
|
args = parser.parse_args()
|
|
|
|
output = os.path.join(args.output, "UPOS_UD_FRENCH_PLUS_" + str(args.epochs) + "_" + datetime.today().strftime('%Y-%m-%d-%H:%M:%S'))
|
|
print(output)
|
|
|
|
|
|
corpus: Corpus = UniversalDependenciesCorpus(
|
|
data_folder='UD_FRENCH_PLUS',
|
|
train_file="fr_gsd-ud-train.conllu",
|
|
test_file="fr_gsd-ud-test.conllu",
|
|
dev_file="fr_gsd-ud-dev.conllu",
|
|
)
|
|
|
|
|
|
tag_type = 'upos'
|
|
|
|
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
|
|
|
|
|
embedding_types = [
|
|
WordEmbeddings('fr'),
|
|
]
|
|
|
|
embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)
|
|
|
|
tagger: SequenceTagger = SequenceTagger(
|
|
hidden_size=256,
|
|
embeddings=embeddings,
|
|
tag_dictionary=tag_dictionary,
|
|
tag_type=tag_type,
|
|
use_crf=True
|
|
)
|
|
|
|
trainer: ModelTrainer = ModelTrainer(tagger, corpus)
|
|
|
|
trainer.train(
|
|
output,
|
|
learning_rate=0.1,
|
|
mini_batch_size=128,
|
|
max_epochs=args.epochs
|
|
) |