Quentin Gallouédec commited on
Commit
3befa29
·
1 Parent(s): c321ca2

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartpoleDMC-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartpoleDMC-v0
16
+ type: CartpoleDMC-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 991.74 +/- 0.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **CartpoleDMC-v0**
25
+ This is a trained model of a **DDPG** agent playing **CartpoleDMC-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env CartpoleDMC-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env CartpoleDMC-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env CartpoleDMC-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env CartpoleDMC-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env CartpoleDMC-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env CartpoleDMC-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('n_timesteps', 1000000.0),
66
+ ('policy', 'MlpPolicy'),
67
+ ('policy_kwargs',
68
+ 'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
69
+ ('normalize', False)])
70
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - CartpoleDMC-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - dmc_gym
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1840051874
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - n_timesteps
3
+ - 1000000.0
4
+ - - policy
5
+ - MlpPolicy
6
+ - - policy_kwargs
7
+ - dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
ddpg-CartpoleDMC-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:923cb4e841cb805d69a220f0c0498569eb2abfb1a3713001d96a7662b47f5826
3
+ size 3010029
ddpg-CartpoleDMC-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ddpg-CartpoleDMC-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb20b1fe7bab4e0da2512800c8914f14964df922fc5e0eac9e6ab98deefea832
3
+ size 502319
ddpg-CartpoleDMC-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d120ee30a9e4a1c5c8d20f75573f83f7ad0261a31f55c9bb2ca16f22df0c6441
3
+ size 991855
ddpg-CartpoleDMC-v0/data ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x153e1c700>",
8
+ "_build": "<function TD3Policy._build at 0x153e1c790>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x153e1c820>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x153e1c8b0>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x153e1c940>",
12
+ "forward": "<function TD3Policy.forward at 0x153e1c9d0>",
13
+ "_predict": "<function TD3Policy._predict at 0x153e1ca60>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x153e1caf0>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x153e15e80>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": {
21
+ "pi": [
22
+ 300,
23
+ 200
24
+ ],
25
+ "qf": [
26
+ 400,
27
+ 300
28
+ ]
29
+ },
30
+ "n_critics": 1
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVMgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/5RoC0sFhZSMAUOUdJRSlIwEaGlnaJRoEyiWFAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAf5RoC0sFhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgUAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYFAAAAAAAAAAAAAAAAlGgiSwWFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgPyvMR0jzuf33p6KWaKEEdF5TV9qkgLWaKbF34cjJHvwV92wv7gsUSLwr38i0G9vi5NBuuqlN7ZDGBuAz11m0vRkDoDT2qad2gr2brCw3sJ3Z8LPQWWpTA5HgiW7bdTJv/rPpwK+PM0XYOiJ9Cn8i+eSbMXWZKbGrRQeGevQ7XoO8js1VHts1JZFRpNbW+8zjvREq5rEvA508h4tgqAENKa2PKr0+fb13bxaQJ5LH5r1loSfaQfdt18AJKtKHGhLEpoQf3DC3ZBc6v7hmMiAzCLa1T6oaEPs8hlPz/tJ/Hksnh4M0xlxZQLRgWdBADXYG8uvdD/eYl+JWWnl/K7RI4u+L/r925+sqYLxFwmbtJ3znMSo16z78K45NNA7/XSqGJtCXJ5PNETzBl+1SB8Vwv1wooQK5SkbT/WHiorzJ+V5042SemA2NPSFHRudsSDKfjX4xq2biVUmFwXmzkoVvoVMSnRM6RkdmmGn3/rKdFq3noR43w9DrgUXzcwrpQ6QF4z/ScmAUgTd/rP1+3kiK6O6woQzn1SBALDlsNa1L6yg5OCvnd8QK3Kivaeu9ukWxE/Z/9vfdlEtIXkCFj0h/fO7h0GO/M/VVQ3nVNpZblVdLPbRwXS/RhQUCKRVwUbYod1vipOG+JGSIb/TasYogZKxDd+m++1oaQBCFDK8W0jlYvxowxJnBJMDAN7irQP68T8uULTs8CeiePBDpVnx1HaEPHGHJDpscId/yokrdKUvJQ2FJzbjBXs/owDC48zyt3eHXuJCU/nduRXLDgrD5glYLoLwBdjWkLmv+Vy7zCWYnhQsq7FLQeczzeNYSI9KoWmHZ4pEy1DOJAxOTQi1pDzEBpplUOaOtzTxRxZnq++o5o6yGqSvZUMkXe5vk/RfGp8JQz0lVR74LczTZqWPQuPwGi6AXb2d8ICqTlAzPfRQyxEEI+DFhIdvIptSOfTplM1CK1liQYSK9q4vVc6xJC/C4tqNYasLpaNPGfJIKD+yPN1U9Htn34+kh4h1ctLkDEQZtmSl4OBGmMvZHB4fQie0PasmUuOBcanGYIfBFh2SsdXuRol2JvGtSjJbS6zAZl4pWjI/PVHxhB5V7zK/mjwdgYy2jdCu9u5KJBy4DRvsOPzOLU+tUtE8x1tvcR2e+SXwSz5G3AVyn2xsMxarZJttX5ZkX9RXkopgRTWMHUIwt6/sZ6kA/EuengjqFAeKw1RhbNDH1S7K8pwlRpvHbYCogHS80aC0PxxbCWzsPlAUPqopyD5XwKi23/NVvvP3YeY7DzUGMyHdj2JxDwBEjDgPI+2dRohqBoDVziR4g0O0f/y3rP0bMGY4AJInnHdu5sSyfIAvcL1BKGcnDF2FwBwk75wh/UfMSU2LAbSqGAMaeMD4jLhR/H4zZOAFOzHptaVyMx1t4hu17PmHnfWZT/FYyFV4AjXMbgpuryRj9vl+a0hw8VpeaUz9RDSWUDWTsFNnwXqTYIOV3/44ESj6ZP4Fv9HzCUPrXkN4QD4zVYskNCQWDeBljMgfTFk8lmmE5hHCK9szpeGZcgCAc5DqeyB3qg09CFJWkACCSHmeHwKF8FeCWlE4pYHfdxy0jTiK4QjLLWNftj16KNNHPnMmZjoc53m0X+VHzM+dzBruRQ5W94RN9D+YNcIPqs13zsNCoJQxxYlH6lDzdGDs/sefpfjqd/oxKHERr4fnWzxTVuQXmEJArYO67gOljuEkG3XKS/AgiVTogyk4AIop+klB7Q4HDzfau/IwAdcoYAMViijMrtoS2cjLe6RkQNp/+oRGqkRHHQlbzqG7p+rNOfUyPPUZTgz5bMoIXLHwn9Uv/WWHayNq7WgMCegypVBgR6Rw9xj7wJhyAslYuPlx47HhzFPT5EEUtnlkp6INo646+tDpSkR3PM3uuvNT0SkOUDluB3f74XypKRj3xyCPRu2t3C0vlCI54t0ICLHaz+ijbHHpjADIq4nhNvOTU/aud4o8s2dUBoQ35K3Tm7B3IcDgFtCaflDL4YOPfmrI6DHz5skf01V5Qa5W2yWl8B5qmYQ5ow17403FaKrRKMEZSgsEUAXZoQRXtlusyr/CW0BQG5wicpFWbCuOsDfSZZXu7CUAuv6421q8Aqt/GkPkISAl6AcnTPk3ufG8ZaLl8lRQmD3w5k8vfRXi7MM/vPduBfdyYpgwc5CpcoSoWvBmoh0WDO4G+yvA9inNrZDeDImKQxXgnyJLm1fKPo9U/L+/i1D3D+Oi8ab1io4CYXGafde5kROQudxsRhqDzqodjE6PsIbfxd855SV7WF0MArI9aQfa2LUvpddtRkA8l12mtPDdi+zkoWbMx3i5sRjoAUg0ikCKGXaaC/yYN/WwDZl+XpYYVuSXE1IRswv6KmKiJHzbjVKiXNPFfzpRDemi7x3TNfE6Ihya4ZR9yNpHpWZuxBJl8tmG3xuzpPUVYPGbdC42BWI9Dd5SWFUqTDgU6GZTgif1iht2Iz/IciXG3AwrO9F96WUp6DbXaiDAVm/YJjfVgtWlbOA6vfj9SjUFbGYOj7XudraSz7Q5jC34Bc9ff/O05mlbOreThcMLQrxfOG9PQJEjxEWQ/ZL1QpJH2oi6gAqeEkZmOhKXJ/xOX3GWLFjx7jgv96KZPm15M0raA72hy1eZo2AymbeSIFYdgiCnvQ+zhS7h93oEW+1W1ViAAjn5mXHIgfQE/fRXzH3flm1TU0NleaaKR9ZpLHEugFllAFzHY+PzNJsCcr92SYeFEIZ5/O6K8wEaIj9kRSnxOr5vcXcyteEtMuASGiUYzfU+jp7U7pqvg4x7Td/1KmoR6gS5F+0I0ERTlsqzGlbF7Ni0zf1MNevodEqDQRnbNbnwmC79JB1E4jO7IN7atEYt2gCM3PTTJaDdJrzS44e0YympSqOU3i3YCKUEejxP/X6WohfZQEcV3nfsFOH0QJugsGMed3bbfE0+jyGofpJBXbgLkNHYvUSci9xp+TD9AYHcjl4dPcBH1o3sqM5tWlGNUaq7rgUVHrnIUh1C1wus+PG6bVe6/yQDg1yIAQQ9g0nwmxGTfFV+qfA3LLbmdQ58pGPnsBvxRAOHPblPR+N6t619+IXeXTGza2SyimwHo+gPdP4k9StVUZHPBiRJiiBDXxbXm5ankcnvqzaFZ1o3zmCi03R5gTeoiJr4NA681tZgpVJsxgW2po6c2NdNwoBZPoXzcN0wJk38Z23dQKQELeUaXPNUzimTHfKhyGPM0HIkK8cUNc9Z8jGHfFRh2RwBMorVqgzR5SrMXP+4CsKnv3qhR8T87fCSbBpnSu62wFYDvUPLm27JMIo+z/U0QE6nlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 5
38
+ ],
39
+ "low": "[-inf -inf -inf -inf -inf]",
40
+ "high": "[inf inf inf inf inf]",
41
+ "bounded_below": "[False False False False False]",
42
+ "bounded_above": "[False False False False False]",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.box.Box'>",
47
+ ":serialized:": "gAWVCgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgLSwGFlIwBQ5R0lFKUjARoaWdolGgTKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYBAAAAAAAAAAGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYBAAAAAAAAAAGUaCJLAYWUaBZ0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEyiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiTXAChZRoFnSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
48
+ "dtype": "float32",
49
+ "_shape": [
50
+ 1
51
+ ],
52
+ "low": "[-1.]",
53
+ "high": "[1.]",
54
+ "bounded_below": "[ True]",
55
+ "bounded_above": "[ True]",
56
+ "_np_random": "RandomState(MT19937)"
57
+ },
58
+ "n_envs": 1,
59
+ "num_timesteps": 1000000,
60
+ "_total_timesteps": 1000000,
61
+ "_num_timesteps_at_start": 0,
62
+ "seed": 0,
63
+ "action_noise": null,
64
+ "start_time": 1673793870909720000,
65
+ "learning_rate": 0.001,
66
+ "tensorboard_log": null,
67
+ "lr_schedule": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9xdWVudGluZ2FsbG91ZWRlYy9kbWNfZ3ltL2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9xdWVudGluZ2FsbG91ZWRlYy9kbWNfZ3ltL2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
70
+ },
71
+ "_last_obs": null,
72
+ "_last_episode_starts": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
75
+ },
76
+ "_last_original_obs": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWViQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAOnQ376k/38/exNZu9j9Tb15GzE8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwWGlIwBQ5R0lFKULg=="
79
+ },
80
+ "_episode_num": 1000,
81
+ "use_sde": false,
82
+ "sde_sample_freq": -1,
83
+ "_current_progress_remaining": 0.0,
84
+ "ep_info_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIborHRfUzj0CUhpRSlIwBbJRN6AOMAXSUR0CjoaoHC4z8dX2UKGgGaAloD0MIlbn5RvR7iUCUhpRSlGgVTegDaBZHQKOnd8l5WzZ1fZQoaAZoCWgPQwi8XS9NUYyIQJSGlFKUaBVN6ANoFkdAo60o4Ia99XV9lChoBmgJaA9DCMr+eRqw645AlIaUUpRoFU3oA2gWR0CjsuSp71IzdX2UKGgGaAloD0MIidNJtvrbjkCUhpRSlGgVTegDaBZHQKO4fkELYwt1fZQoaAZoCWgPQwj9LQH4JzyIQJSGlFKUaBVN6ANoFkdAo74TufEn9nV9lChoBmgJaA9DCK2E7pL4545AlIaUUpRoFU3oA2gWR0Cjw5em3vx6dX2UKGgGaAloD0MIC/Dd5s39jkCUhpRSlGgVTegDaBZHQKPJLo7FKkF1fZQoaAZoCWgPQwiRe7q6wyWPQJSGlFKUaBVN6ANoFkdAo867wYtQK3V9lChoBmgJaA9DCEoJwapaI49AlIaUUpRoFU3oA2gWR0Cj1FVmSQo1dX2UKGgGaAloD0MICvSJPClVi0CUhpRSlGgVTegDaBZHQKPZ6BT4tYl1fZQoaAZoCWgPQwhNaf0tga+OQJSGlFKUaBVN6ANoFkdAo998OmR/3HV9lChoBmgJaA9DCOCBAYTv9Y5AlIaUUpRoFU3oA2gWR0Cj5Qsz2vjfdX2UKGgGaAloD0MIR450BkbNeUCUhpRSlGgVTegDaBZHQKPqoCJXQt11fZQoaAZoCWgPQwjCTUaVAYqCQJSGlFKUaBVN6ANoFkdAo/Au9YfW+XV9lChoBmgJaA9DCOV8sffiJo9AlIaUUpRoFU3oA2gWR0Cj9bmO2iL3dX2UKGgGaAloD0MIwLFnz4VjgUCUhpRSlGgVTegDaBZHQKP7UtVaOgh1fZQoaAZoCWgPQwgjopi8gTuJQJSGlFKUaBVN6ANoFkdApADbofSx7nV9lChoBmgJaA9DCKpHGtyWNo9AlIaUUpRoFU3oA2gWR0CkBnFL39JjdX2UKGgGaAloD0MIs7PonSphhECUhpRSlGgVTegDaBZHQKQL+U0Nz8x1fZQoaAZoCWgPQwi0klZ8wyqPQJSGlFKUaBVN6ANoFkdApBGKbtqpLnV9lChoBmgJaA9DCLIRiNdVaYVAlIaUUpRoFU3oA2gWR0CkFxyKekHldX2UKGgGaAloD0MIHzAPmfI4j0CUhpRSlGgVTegDaBZHQKQcouq3mV91fZQoaAZoCWgPQwg6deWzvDePQJSGlFKUaBVN6ANoFkdApCIrBKtga3V9lChoBmgJaA9DCAkVHF6wyo1AlIaUUpRoFU3oA2gWR0CkJ8TZxrBTdX2UKGgGaAloD0MIXp1jQHbgjUCUhpRSlGgVTegDaBZHQKQvbmqYJE91fZQoaAZoCWgPQwiXqUnwhsOJQJSGlFKUaBVN6ANoFkdApDUDlYEGJXV9lChoBmgJaA9DCIYBS67i24xAlIaUUpRoFU3oA2gWR0CkOopxNqQBdX2UKGgGaAloD0MIFO0qpJzXjECUhpRSlGgVTegDaBZHQKRAFbNbC791fZQoaAZoCWgPQwhOX8/XbEmLQJSGlFKUaBVN6ANoFkdApEWdMh5gPXV9lChoBmgJaA9DCAg6WtWSRIdAlIaUUpRoFU3oA2gWR0CkSzMQd0aIdX2UKGgGaAloD0MII6DCESRAikCUhpRSlGgVTegDaBZHQKRQ3rLyMDR1fZQoaAZoCWgPQwiHGoUkc56LQJSGlFKUaBVN6ANoFkdApFZs5Qxes3V9lChoBmgJaA9DCILjMm7KHYpAlIaUUpRoFU3oA2gWR0CkW/+yiVSodX2UKGgGaAloD0MI4QfnUwf8i0CUhpRSlGgVTegDaBZHQKRhhNIK+i91fZQoaAZoCWgPQwjS4La2EHKHQJSGlFKUaBVN6ANoFkdApGcLG5tm+XV9lChoBmgJaA9DCEinrny2l4pAlIaUUpRoFU3oA2gWR0CkbJSXMQmNdX2UKGgGaAloD0MI0eY4t+nMjUCUhpRSlGgVTegDaBZHQKRyHtix3V11fZQoaAZoCWgPQwh6VWe1YDmPQJSGlFKUaBVN6ANoFkdApHekR+SbIHV9lChoBmgJaA9DCJGadjEtsYVAlIaUUpRoFU3oA2gWR0CkfTbn5i3HdX2UKGgGaAloD0MITp1HxZ9sjUCUhpRSlGgVTegDaBZHQKSCxJwKjSJ1fZQoaAZoCWgPQwgAOPbsOS6NQJSGlFKUaBVN6ANoFkdApIhZcVxjrnV9lChoBmgJaA9DCB2vQPQkMY9AlIaUUpRoFU3oA2gWR0CkjenWBjFydX2UKGgGaAloD0MIUAEwnqEyhUCUhpRSlGgVTegDaBZHQKSTfeVLSNR1fZQoaAZoCWgPQwhkWTDxJyiOQJSGlFKUaBVN6ANoFkdApJkW+AVfu3V9lChoBmgJaA9DCOHvF7NlUYxAlIaUUpRoFU3oA2gWR0CknqZ0KZ2IdX2UKGgGaAloD0MIFvw2xBh3iUCUhpRSlGgVTegDaBZHQKSkOouPFNt1fZQoaAZoCWgPQwjYZmMlhiOEQJSGlFKUaBVN6ANoFkdApKnFgF5fMXV9lChoBmgJaA9DCEt319kwXYNAlIaUUpRoFU3oA2gWR0Ckr1F9Sde6dX2UKGgGaAloD0MITgte9LU3j0CUhpRSlGgVTegDaBZHQKS054DcM3J1fZQoaAZoCWgPQwjKi0zALy6PQJSGlFKUaBVN6ANoFkdApLx/420iQnV9lChoBmgJaA9DCBn/PuNiropAlIaUUpRoFU3oA2gWR0CkwkewcHW0dX2UKGgGaAloD0MIR3L5DyndhkCUhpRSlGgVTegDaBZHQKTH+20iQkp1fZQoaAZoCWgPQwjKoxthsRqPQJSGlFKUaBVN6ANoFkdApM2hN7BwdnV9lChoBmgJaA9DCIGTbeCOOY9AlIaUUpRoFU3oA2gWR0Ck0zTefqX4dX2UKGgGaAloD0MId0zdlb03jUCUhpRSlGgVTegDaBZHQKTYvi7TUiJ1fZQoaAZoCWgPQwhP6svSToiKQJSGlFKUaBVN6ANoFkdApN5ETcqOLnV9lChoBmgJaA9DCB2PGagsAo1AlIaUUpRoFU3oA2gWR0Ck5CIw/PgOdX2UKGgGaAloD0MI5gMCnQk8j0CUhpRSlGgVTegDaBZHQKTqBU1hsqJ1fZQoaAZoCWgPQwgqHEEqheyKQJSGlFKUaBVN6ANoFkdApO+4A+6iCnV9lChoBmgJaA9DCKA1P/5yKI1AlIaUUpRoFU3oA2gWR0Ck9UGoR7JGdX2UKGgGaAloD0MIBYpYxHA5jkCUhpRSlGgVTegDaBZHQKT61o0Q9Rt1fZQoaAZoCWgPQwinXOFdDmmFQJSGlFKUaBVN6ANoFkdApQBkQVbiZXV9lChoBmgJaA9DCCBgrdoVMYpAlIaUUpRoFU3oA2gWR0ClBfmb9ZRsdX2UKGgGaAloD0MIK76h8Nmkh0CUhpRSlGgVTegDaBZHQKULkt6HCXR1fZQoaAZoCWgPQwh5zhYQWsSJQJSGlFKUaBVN6ANoFkdApREar/82rHV9lChoBmgJaA9DCP9aXrm+54tAlIaUUpRoFU3oA2gWR0ClFqBoM8YAdX2UKGgGaAloD0MISwSqf3ARjECUhpRSlGgVTegDaBZHQKUcKLYPGyZ1fZQoaAZoCWgPQwimgLT/geKJQJSGlFKUaBVN6ANoFkdApSHDvqkdm3V9lChoBmgJaA9DCC/3yVEgSYdAlIaUUpRoFU3oA2gWR0ClJ04sunMudX2UKGgGaAloD0MIUu4+x4e9hUCUhpRSlGgVTegDaBZHQKUs5Wy1NQF1fZQoaAZoCWgPQwiGqphKX4yKQJSGlFKUaBVN6ANoFkdApTJ5m03OwHV9lChoBmgJaA9DCPnaM0siuYJAlIaUUpRoFU3oA2gWR0ClOAQHAymAdX2UKGgGaAloD0MIUmNCzAUxjECUhpRSlGgVTegDaBZHQKU9jeQdS2p1fZQoaAZoCWgPQwhhNgGGpSmGQJSGlFKUaBVN6ANoFkdApUMSyt3fRHV9lChoBmgJaA9DCF3Cobe4E41AlIaUUpRoFU3oA2gWR0ClSmdbgTAWdX2UKGgGaAloD0MIfAxWnMq1jECUhpRSlGgVTegDaBZHQKVQN/hl18t1fZQoaAZoCWgPQwjFdYwrLpGGQJSGlFKUaBVN6ANoFkdApVXnB+F10XV9lChoBmgJaA9DCIfCZ+vA+41AlIaUUpRoFU3oA2gWR0ClW5FGPPszdX2UKGgGaAloD0MImWclrZhbiUCUhpRSlGgVTegDaBZHQKVhJ5AQg9x1fZQoaAZoCWgPQwiaIyu/bLyJQJSGlFKUaBVN6ANoFkdApWawAS39aXV9lChoBmgJaA9DCOXsndHWuItAlIaUUpRoFU3oA2gWR0ClbDVvddmhdX2UKGgGaAloD0MIUbzK2sZGh0CUhpRSlGgVTegDaBZHQKVxyYekpJB1fZQoaAZoCWgPQwhbsirCrUyDQJSGlFKUaBVN6ANoFkdApXddbiZOSHV9lChoBmgJaA9DCKVPq+hPRIZAlIaUUpRoFU3oA2gWR0ClfPWyLQ5WdX2UKGgGaAloD0MIC2E1lnCXhkCUhpRSlGgVTegDaBZHQKWCi6JZW7x1fZQoaAZoCWgPQwj/sRAdonWOQJSGlFKUaBVN6ANoFkdApYgQbQ1JlXV9lChoBmgJaA9DCLrYtFLoCI5AlIaUUpRoFU3oA2gWR0CljaOpS75EdX2UKGgGaAloD0MIrJFdaVljjECUhpRSlGgVTegDaBZHQKWTLzcynDR1fZQoaAZoCWgPQwjg9gSJrcyKQJSGlFKUaBVN6ANoFkdApZi2B8QZoHV9lChoBmgJaA9DCP8iaMxk24NAlIaUUpRoFU3oA2gWR0ClnjsAeaKDdX2UKGgGaAloD0MIURa+vtYRh0CUhpRSlGgVTegDaBZHQKWj0APNFBp1fZQoaAZoCWgPQwghIjXt4q2CQJSGlFKUaBVN6ANoFkdApalbc9GI9HV9lChoBmgJaA9DCMRafAqA541AlIaUUpRoFU3oA2gWR0ClruQOnVG1dX2UKGgGaAloD0MIm3Eaoqq1jECUhpRSlGgVTegDaBZHQKW0fDUmUnp1fZQoaAZoCWgPQwiEm4wqw+WKQJSGlFKUaBVN6ANoFkdApboUejmCAnV9lChoBmgJaA9DCF9cqtJWD4tAlIaUUpRoFU3oA2gWR0Clv6GYBvJjdX2UKGgGaAloD0MIhqxu9ZxmiUCUhpRSlGgVTegDaBZHQKXFOtPpIMB1fZQoaAZoCWgPQwjvHTUmZNqIQJSGlFKUaBVN6ANoFkdApcrC8OCoTHV9lChoBmgJaA9DCNAM4gObgI1AlIaUUpRoFU3oA2gWR0Cl0E0EHMUzdWUu"
87
+ },
88
+ "ep_success_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
91
+ },
92
+ "_n_updates": 1000000,
93
+ "buffer_size": 1,
94
+ "batch_size": 100,
95
+ "learning_starts": 100,
96
+ "tau": 0.005,
97
+ "gamma": 0.99,
98
+ "gradient_steps": -1,
99
+ "optimize_memory_usage": false,
100
+ "replay_buffer_class": {
101
+ ":type:": "<class 'abc.ABCMeta'>",
102
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
103
+ "__module__": "stable_baselines3.common.buffers",
104
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
105
+ "__init__": "<function ReplayBuffer.__init__ at 0x153e0b250>",
106
+ "add": "<function ReplayBuffer.add at 0x153e0b2e0>",
107
+ "sample": "<function ReplayBuffer.sample at 0x153e0b370>",
108
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x153e0b400>",
109
+ "__abstractmethods__": "frozenset()",
110
+ "_abc_impl": "<_abc._abc_data object at 0x153e03f40>"
111
+ },
112
+ "replay_buffer_kwargs": {},
113
+ "train_freq": {
114
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
115
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
116
+ },
117
+ "use_sde_at_warmup": false,
118
+ "policy_delay": 1,
119
+ "target_noise_clip": 0.0,
120
+ "target_policy_noise": 0.1,
121
+ "actor_batch_norm_stats": [],
122
+ "critic_batch_norm_stats": [],
123
+ "actor_batch_norm_stats_target": [],
124
+ "critic_batch_norm_stats_target": []
125
+ }
ddpg-CartpoleDMC-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da847fad2037ddb02726800e4a0df41f4381cdeb2db097268415452192dbfc6e
3
+ size 1492509
ddpg-CartpoleDMC-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-CartpoleDMC-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6e31e14f626aa13b39aa9599bbc2098dabbe353811f68cff712d31cbd29fca9
3
+ size 126013
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 991.7419097999998, "std_reward": 0.45462611289097343, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T16:57:59.429907"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4938adfe4c1ee50bc2dc3f220e636d4cd5d641becf774bb40109a6b2bea90b
3
+ size 32968