Quentin Gallouédec
commited on
Commit
·
3befa29
1
Parent(s):
c321ca2
Initial commit
Browse files- .gitattributes +1 -0
- README.md +70 -0
- args.yml +83 -0
- config.yml +7 -0
- ddpg-CartpoleDMC-v0.zip +3 -0
- ddpg-CartpoleDMC-v0/_stable_baselines3_version +1 -0
- ddpg-CartpoleDMC-v0/actor.optimizer.pth +3 -0
- ddpg-CartpoleDMC-v0/critic.optimizer.pth +3 -0
- ddpg-CartpoleDMC-v0/data +125 -0
- ddpg-CartpoleDMC-v0/policy.pth +3 -0
- ddpg-CartpoleDMC-v0/pytorch_variables.pth +3 -0
- ddpg-CartpoleDMC-v0/system_info.txt +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartpoleDMC-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartpoleDMC-v0
|
16 |
+
type: CartpoleDMC-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 991.74 +/- 0.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **CartpoleDMC-v0**
|
25 |
+
This is a trained model of a **DDPG** agent playing **CartpoleDMC-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env CartpoleDMC-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ddpg --env CartpoleDMC-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env CartpoleDMC-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ddpg --env CartpoleDMC-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ddpg --env CartpoleDMC-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ddpg --env CartpoleDMC-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('n_timesteps', 1000000.0),
|
66 |
+
('policy', 'MlpPolicy'),
|
67 |
+
('policy_kwargs',
|
68 |
+
'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
|
69 |
+
('normalize', False)])
|
70 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ddpg
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- CartpoleDMC-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- - dmc_gym
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1840051874
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - n_timesteps
|
3 |
+
- 1000000.0
|
4 |
+
- - policy
|
5 |
+
- MlpPolicy
|
6 |
+
- - policy_kwargs
|
7 |
+
- dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
|
ddpg-CartpoleDMC-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:923cb4e841cb805d69a220f0c0498569eb2abfb1a3713001d96a7662b47f5826
|
3 |
+
size 3010029
|
ddpg-CartpoleDMC-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ddpg-CartpoleDMC-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb20b1fe7bab4e0da2512800c8914f14964df922fc5e0eac9e6ab98deefea832
|
3 |
+
size 502319
|
ddpg-CartpoleDMC-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d120ee30a9e4a1c5c8d20f75573f83f7ad0261a31f55c9bb2ca16f22df0c6441
|
3 |
+
size 991855
|
ddpg-CartpoleDMC-v0/data
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x153e1c700>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x153e1c790>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x153e1c820>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x153e1c8b0>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x153e1c940>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x153e1c9d0>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x153e1ca60>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x153e1caf0>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x153e15e80>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": {
|
21 |
+
"pi": [
|
22 |
+
300,
|
23 |
+
200
|
24 |
+
],
|
25 |
+
"qf": [
|
26 |
+
400,
|
27 |
+
300
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"n_critics": 1
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVMgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/5RoC0sFhZSMAUOUdJRSlIwEaGlnaJRoEyiWFAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAf5RoC0sFhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgUAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYFAAAAAAAAAAAAAAAAlGgiSwWFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgPyvMR0jzuf33p6KWaKEEdF5TV9qkgLWaKbF34cjJHvwV92wv7gsUSLwr38i0G9vi5NBuuqlN7ZDGBuAz11m0vRkDoDT2qad2gr2brCw3sJ3Z8LPQWWpTA5HgiW7bdTJv/rPpwK+PM0XYOiJ9Cn8i+eSbMXWZKbGrRQeGevQ7XoO8js1VHts1JZFRpNbW+8zjvREq5rEvA508h4tgqAENKa2PKr0+fb13bxaQJ5LH5r1loSfaQfdt18AJKtKHGhLEpoQf3DC3ZBc6v7hmMiAzCLa1T6oaEPs8hlPz/tJ/Hksnh4M0xlxZQLRgWdBADXYG8uvdD/eYl+JWWnl/K7RI4u+L/r925+sqYLxFwmbtJ3znMSo16z78K45NNA7/XSqGJtCXJ5PNETzBl+1SB8Vwv1wooQK5SkbT/WHiorzJ+V5042SemA2NPSFHRudsSDKfjX4xq2biVUmFwXmzkoVvoVMSnRM6RkdmmGn3/rKdFq3noR43w9DrgUXzcwrpQ6QF4z/ScmAUgTd/rP1+3kiK6O6woQzn1SBALDlsNa1L6yg5OCvnd8QK3Kivaeu9ukWxE/Z/9vfdlEtIXkCFj0h/fO7h0GO/M/VVQ3nVNpZblVdLPbRwXS/RhQUCKRVwUbYod1vipOG+JGSIb/TasYogZKxDd+m++1oaQBCFDK8W0jlYvxowxJnBJMDAN7irQP68T8uULTs8CeiePBDpVnx1HaEPHGHJDpscId/yokrdKUvJQ2FJzbjBXs/owDC48zyt3eHXuJCU/nduRXLDgrD5glYLoLwBdjWkLmv+Vy7zCWYnhQsq7FLQeczzeNYSI9KoWmHZ4pEy1DOJAxOTQi1pDzEBpplUOaOtzTxRxZnq++o5o6yGqSvZUMkXe5vk/RfGp8JQz0lVR74LczTZqWPQuPwGi6AXb2d8ICqTlAzPfRQyxEEI+DFhIdvIptSOfTplM1CK1liQYSK9q4vVc6xJC/C4tqNYasLpaNPGfJIKD+yPN1U9Htn34+kh4h1ctLkDEQZtmSl4OBGmMvZHB4fQie0PasmUuOBcanGYIfBFh2SsdXuRol2JvGtSjJbS6zAZl4pWjI/PVHxhB5V7zK/mjwdgYy2jdCu9u5KJBy4DRvsOPzOLU+tUtE8x1tvcR2e+SXwSz5G3AVyn2xsMxarZJttX5ZkX9RXkopgRTWMHUIwt6/sZ6kA/EuengjqFAeKw1RhbNDH1S7K8pwlRpvHbYCogHS80aC0PxxbCWzsPlAUPqopyD5XwKi23/NVvvP3YeY7DzUGMyHdj2JxDwBEjDgPI+2dRohqBoDVziR4g0O0f/y3rP0bMGY4AJInnHdu5sSyfIAvcL1BKGcnDF2FwBwk75wh/UfMSU2LAbSqGAMaeMD4jLhR/H4zZOAFOzHptaVyMx1t4hu17PmHnfWZT/FYyFV4AjXMbgpuryRj9vl+a0hw8VpeaUz9RDSWUDWTsFNnwXqTYIOV3/44ESj6ZP4Fv9HzCUPrXkN4QD4zVYskNCQWDeBljMgfTFk8lmmE5hHCK9szpeGZcgCAc5DqeyB3qg09CFJWkACCSHmeHwKF8FeCWlE4pYHfdxy0jTiK4QjLLWNftj16KNNHPnMmZjoc53m0X+VHzM+dzBruRQ5W94RN9D+YNcIPqs13zsNCoJQxxYlH6lDzdGDs/sefpfjqd/oxKHERr4fnWzxTVuQXmEJArYO67gOljuEkG3XKS/AgiVTogyk4AIop+klB7Q4HDzfau/IwAdcoYAMViijMrtoS2cjLe6RkQNp/+oRGqkRHHQlbzqG7p+rNOfUyPPUZTgz5bMoIXLHwn9Uv/WWHayNq7WgMCegypVBgR6Rw9xj7wJhyAslYuPlx47HhzFPT5EEUtnlkp6INo646+tDpSkR3PM3uuvNT0SkOUDluB3f74XypKRj3xyCPRu2t3C0vlCI54t0ICLHaz+ijbHHpjADIq4nhNvOTU/aud4o8s2dUBoQ35K3Tm7B3IcDgFtCaflDL4YOPfmrI6DHz5skf01V5Qa5W2yWl8B5qmYQ5ow17403FaKrRKMEZSgsEUAXZoQRXtlusyr/CW0BQG5wicpFWbCuOsDfSZZXu7CUAuv6421q8Aqt/GkPkISAl6AcnTPk3ufG8ZaLl8lRQmD3w5k8vfRXi7MM/vPduBfdyYpgwc5CpcoSoWvBmoh0WDO4G+yvA9inNrZDeDImKQxXgnyJLm1fKPo9U/L+/i1D3D+Oi8ab1io4CYXGafde5kROQudxsRhqDzqodjE6PsIbfxd855SV7WF0MArI9aQfa2LUvpddtRkA8l12mtPDdi+zkoWbMx3i5sRjoAUg0ikCKGXaaC/yYN/WwDZl+XpYYVuSXE1IRswv6KmKiJHzbjVKiXNPFfzpRDemi7x3TNfE6Ihya4ZR9yNpHpWZuxBJl8tmG3xuzpPUVYPGbdC42BWI9Dd5SWFUqTDgU6GZTgif1iht2Iz/IciXG3AwrO9F96WUp6DbXaiDAVm/YJjfVgtWlbOA6vfj9SjUFbGYOj7XudraSz7Q5jC34Bc9ff/O05mlbOreThcMLQrxfOG9PQJEjxEWQ/ZL1QpJH2oi6gAqeEkZmOhKXJ/xOX3GWLFjx7jgv96KZPm15M0raA72hy1eZo2AymbeSIFYdgiCnvQ+zhS7h93oEW+1W1ViAAjn5mXHIgfQE/fRXzH3flm1TU0NleaaKR9ZpLHEugFllAFzHY+PzNJsCcr92SYeFEIZ5/O6K8wEaIj9kRSnxOr5vcXcyteEtMuASGiUYzfU+jp7U7pqvg4x7Td/1KmoR6gS5F+0I0ERTlsqzGlbF7Ni0zf1MNevodEqDQRnbNbnwmC79JB1E4jO7IN7atEYt2gCM3PTTJaDdJrzS44e0YympSqOU3i3YCKUEejxP/X6WohfZQEcV3nfsFOH0QJugsGMed3bbfE0+jyGofpJBXbgLkNHYvUSci9xp+TD9AYHcjl4dPcBH1o3sqM5tWlGNUaq7rgUVHrnIUh1C1wus+PG6bVe6/yQDg1yIAQQ9g0nwmxGTfFV+qfA3LLbmdQ58pGPnsBvxRAOHPblPR+N6t619+IXeXTGza2SyimwHo+gPdP4k9StVUZHPBiRJiiBDXxbXm5ankcnvqzaFZ1o3zmCi03R5gTeoiJr4NA681tZgpVJsxgW2po6c2NdNwoBZPoXzcN0wJk38Z23dQKQELeUaXPNUzimTHfKhyGPM0HIkK8cUNc9Z8jGHfFRh2RwBMorVqgzR5SrMXP+4CsKnv3qhR8T87fCSbBpnSu62wFYDvUPLm27JMIo+z/U0QE6nlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
5
|
38 |
+
],
|
39 |
+
"low": "[-inf -inf -inf -inf -inf]",
|
40 |
+
"high": "[inf inf inf inf inf]",
|
41 |
+
"bounded_below": "[False False False False False]",
|
42 |
+
"bounded_above": "[False False False False False]",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
47 |
+
":serialized:": "gAWVCgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgLSwGFlIwBQ5R0lFKUjARoaWdolGgTKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYBAAAAAAAAAAGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYBAAAAAAAAAAGUaCJLAYWUaBZ0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEyiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiTXAChZRoFnSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
48 |
+
"dtype": "float32",
|
49 |
+
"_shape": [
|
50 |
+
1
|
51 |
+
],
|
52 |
+
"low": "[-1.]",
|
53 |
+
"high": "[1.]",
|
54 |
+
"bounded_below": "[ True]",
|
55 |
+
"bounded_above": "[ True]",
|
56 |
+
"_np_random": "RandomState(MT19937)"
|
57 |
+
},
|
58 |
+
"n_envs": 1,
|
59 |
+
"num_timesteps": 1000000,
|
60 |
+
"_total_timesteps": 1000000,
|
61 |
+
"_num_timesteps_at_start": 0,
|
62 |
+
"seed": 0,
|
63 |
+
"action_noise": null,
|
64 |
+
"start_time": 1673793870909720000,
|
65 |
+
"learning_rate": 0.001,
|
66 |
+
"tensorboard_log": null,
|
67 |
+
"lr_schedule": {
|
68 |
+
":type:": "<class 'function'>",
|
69 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9xdWVudGluZ2FsbG91ZWRlYy9kbWNfZ3ltL2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9xdWVudGluZ2FsbG91ZWRlYy9kbWNfZ3ltL2Vudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
70 |
+
},
|
71 |
+
"_last_obs": null,
|
72 |
+
"_last_episode_starts": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
75 |
+
},
|
76 |
+
"_last_original_obs": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gAWViQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAOnQ376k/38/exNZu9j9Tb15GzE8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwWGlIwBQ5R0lFKULg=="
|
79 |
+
},
|
80 |
+
"_episode_num": 1000,
|
81 |
+
"use_sde": false,
|
82 |
+
"sde_sample_freq": -1,
|
83 |
+
"_current_progress_remaining": 0.0,
|
84 |
+
"ep_info_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIborHRfUzj0CUhpRSlIwBbJRN6AOMAXSUR0CjoaoHC4z8dX2UKGgGaAloD0MIlbn5RvR7iUCUhpRSlGgVTegDaBZHQKOnd8l5WzZ1fZQoaAZoCWgPQwi8XS9NUYyIQJSGlFKUaBVN6ANoFkdAo60o4Ia99XV9lChoBmgJaA9DCMr+eRqw645AlIaUUpRoFU3oA2gWR0CjsuSp71IzdX2UKGgGaAloD0MIidNJtvrbjkCUhpRSlGgVTegDaBZHQKO4fkELYwt1fZQoaAZoCWgPQwj9LQH4JzyIQJSGlFKUaBVN6ANoFkdAo74TufEn9nV9lChoBmgJaA9DCK2E7pL4545AlIaUUpRoFU3oA2gWR0Cjw5em3vx6dX2UKGgGaAloD0MIC/Dd5s39jkCUhpRSlGgVTegDaBZHQKPJLo7FKkF1fZQoaAZoCWgPQwiRe7q6wyWPQJSGlFKUaBVN6ANoFkdAo867wYtQK3V9lChoBmgJaA9DCEoJwapaI49AlIaUUpRoFU3oA2gWR0Cj1FVmSQo1dX2UKGgGaAloD0MICvSJPClVi0CUhpRSlGgVTegDaBZHQKPZ6BT4tYl1fZQoaAZoCWgPQwhNaf0tga+OQJSGlFKUaBVN6ANoFkdAo998OmR/3HV9lChoBmgJaA9DCOCBAYTv9Y5AlIaUUpRoFU3oA2gWR0Cj5Qsz2vjfdX2UKGgGaAloD0MIR450BkbNeUCUhpRSlGgVTegDaBZHQKPqoCJXQt11fZQoaAZoCWgPQwjCTUaVAYqCQJSGlFKUaBVN6ANoFkdAo/Au9YfW+XV9lChoBmgJaA9DCOV8sffiJo9AlIaUUpRoFU3oA2gWR0Cj9bmO2iL3dX2UKGgGaAloD0MIwLFnz4VjgUCUhpRSlGgVTegDaBZHQKP7UtVaOgh1fZQoaAZoCWgPQwgjopi8gTuJQJSGlFKUaBVN6ANoFkdApADbofSx7nV9lChoBmgJaA9DCKpHGtyWNo9AlIaUUpRoFU3oA2gWR0CkBnFL39JjdX2UKGgGaAloD0MIs7PonSphhECUhpRSlGgVTegDaBZHQKQL+U0Nz8x1fZQoaAZoCWgPQwi0klZ8wyqPQJSGlFKUaBVN6ANoFkdApBGKbtqpLnV9lChoBmgJaA9DCLIRiNdVaYVAlIaUUpRoFU3oA2gWR0CkFxyKekHldX2UKGgGaAloD0MIHzAPmfI4j0CUhpRSlGgVTegDaBZHQKQcouq3mV91fZQoaAZoCWgPQwg6deWzvDePQJSGlFKUaBVN6ANoFkdApCIrBKtga3V9lChoBmgJaA9DCAkVHF6wyo1AlIaUUpRoFU3oA2gWR0CkJ8TZxrBTdX2UKGgGaAloD0MIXp1jQHbgjUCUhpRSlGgVTegDaBZHQKQvbmqYJE91fZQoaAZoCWgPQwiXqUnwhsOJQJSGlFKUaBVN6ANoFkdApDUDlYEGJXV9lChoBmgJaA9DCIYBS67i24xAlIaUUpRoFU3oA2gWR0CkOopxNqQBdX2UKGgGaAloD0MIFO0qpJzXjECUhpRSlGgVTegDaBZHQKRAFbNbC791fZQoaAZoCWgPQwhOX8/XbEmLQJSGlFKUaBVN6ANoFkdApEWdMh5gPXV9lChoBmgJaA9DCAg6WtWSRIdAlIaUUpRoFU3oA2gWR0CkSzMQd0aIdX2UKGgGaAloD0MII6DCESRAikCUhpRSlGgVTegDaBZHQKRQ3rLyMDR1fZQoaAZoCWgPQwiHGoUkc56LQJSGlFKUaBVN6ANoFkdApFZs5Qxes3V9lChoBmgJaA9DCILjMm7KHYpAlIaUUpRoFU3oA2gWR0CkW/+yiVSodX2UKGgGaAloD0MI4QfnUwf8i0CUhpRSlGgVTegDaBZHQKRhhNIK+i91fZQoaAZoCWgPQwjS4La2EHKHQJSGlFKUaBVN6ANoFkdApGcLG5tm+XV9lChoBmgJaA9DCEinrny2l4pAlIaUUpRoFU3oA2gWR0CkbJSXMQmNdX2UKGgGaAloD0MI0eY4t+nMjUCUhpRSlGgVTegDaBZHQKRyHtix3V11fZQoaAZoCWgPQwh6VWe1YDmPQJSGlFKUaBVN6ANoFkdApHekR+SbIHV9lChoBmgJaA9DCJGadjEtsYVAlIaUUpRoFU3oA2gWR0CkfTbn5i3HdX2UKGgGaAloD0MITp1HxZ9sjUCUhpRSlGgVTegDaBZHQKSCxJwKjSJ1fZQoaAZoCWgPQwgAOPbsOS6NQJSGlFKUaBVN6ANoFkdApIhZcVxjrnV9lChoBmgJaA9DCB2vQPQkMY9AlIaUUpRoFU3oA2gWR0CkjenWBjFydX2UKGgGaAloD0MIUAEwnqEyhUCUhpRSlGgVTegDaBZHQKSTfeVLSNR1fZQoaAZoCWgPQwhkWTDxJyiOQJSGlFKUaBVN6ANoFkdApJkW+AVfu3V9lChoBmgJaA9DCOHvF7NlUYxAlIaUUpRoFU3oA2gWR0CknqZ0KZ2IdX2UKGgGaAloD0MIFvw2xBh3iUCUhpRSlGgVTegDaBZHQKSkOouPFNt1fZQoaAZoCWgPQwjYZmMlhiOEQJSGlFKUaBVN6ANoFkdApKnFgF5fMXV9lChoBmgJaA9DCEt319kwXYNAlIaUUpRoFU3oA2gWR0Ckr1F9Sde6dX2UKGgGaAloD0MITgte9LU3j0CUhpRSlGgVTegDaBZHQKS054DcM3J1fZQoaAZoCWgPQwjKi0zALy6PQJSGlFKUaBVN6ANoFkdApLx/420iQnV9lChoBmgJaA9DCBn/PuNiropAlIaUUpRoFU3oA2gWR0CkwkewcHW0dX2UKGgGaAloD0MIR3L5DyndhkCUhpRSlGgVTegDaBZHQKTH+20iQkp1fZQoaAZoCWgPQwjKoxthsRqPQJSGlFKUaBVN6ANoFkdApM2hN7BwdnV9lChoBmgJaA9DCIGTbeCOOY9AlIaUUpRoFU3oA2gWR0Ck0zTefqX4dX2UKGgGaAloD0MId0zdlb03jUCUhpRSlGgVTegDaBZHQKTYvi7TUiJ1fZQoaAZoCWgPQwhP6svSToiKQJSGlFKUaBVN6ANoFkdApN5ETcqOLnV9lChoBmgJaA9DCB2PGagsAo1AlIaUUpRoFU3oA2gWR0Ck5CIw/PgOdX2UKGgGaAloD0MI5gMCnQk8j0CUhpRSlGgVTegDaBZHQKTqBU1hsqJ1fZQoaAZoCWgPQwgqHEEqheyKQJSGlFKUaBVN6ANoFkdApO+4A+6iCnV9lChoBmgJaA9DCKA1P/5yKI1AlIaUUpRoFU3oA2gWR0Ck9UGoR7JGdX2UKGgGaAloD0MIBYpYxHA5jkCUhpRSlGgVTegDaBZHQKT61o0Q9Rt1fZQoaAZoCWgPQwinXOFdDmmFQJSGlFKUaBVN6ANoFkdApQBkQVbiZXV9lChoBmgJaA9DCCBgrdoVMYpAlIaUUpRoFU3oA2gWR0ClBfmb9ZRsdX2UKGgGaAloD0MIK76h8Nmkh0CUhpRSlGgVTegDaBZHQKULkt6HCXR1fZQoaAZoCWgPQwh5zhYQWsSJQJSGlFKUaBVN6ANoFkdApREar/82rHV9lChoBmgJaA9DCP9aXrm+54tAlIaUUpRoFU3oA2gWR0ClFqBoM8YAdX2UKGgGaAloD0MISwSqf3ARjECUhpRSlGgVTegDaBZHQKUcKLYPGyZ1fZQoaAZoCWgPQwimgLT/geKJQJSGlFKUaBVN6ANoFkdApSHDvqkdm3V9lChoBmgJaA9DCC/3yVEgSYdAlIaUUpRoFU3oA2gWR0ClJ04sunMudX2UKGgGaAloD0MIUu4+x4e9hUCUhpRSlGgVTegDaBZHQKUs5Wy1NQF1fZQoaAZoCWgPQwiGqphKX4yKQJSGlFKUaBVN6ANoFkdApTJ5m03OwHV9lChoBmgJaA9DCPnaM0siuYJAlIaUUpRoFU3oA2gWR0ClOAQHAymAdX2UKGgGaAloD0MIUmNCzAUxjECUhpRSlGgVTegDaBZHQKU9jeQdS2p1fZQoaAZoCWgPQwhhNgGGpSmGQJSGlFKUaBVN6ANoFkdApUMSyt3fRHV9lChoBmgJaA9DCF3Cobe4E41AlIaUUpRoFU3oA2gWR0ClSmdbgTAWdX2UKGgGaAloD0MIfAxWnMq1jECUhpRSlGgVTegDaBZHQKVQN/hl18t1fZQoaAZoCWgPQwjFdYwrLpGGQJSGlFKUaBVN6ANoFkdApVXnB+F10XV9lChoBmgJaA9DCIfCZ+vA+41AlIaUUpRoFU3oA2gWR0ClW5FGPPszdX2UKGgGaAloD0MImWclrZhbiUCUhpRSlGgVTegDaBZHQKVhJ5AQg9x1fZQoaAZoCWgPQwiaIyu/bLyJQJSGlFKUaBVN6ANoFkdApWawAS39aXV9lChoBmgJaA9DCOXsndHWuItAlIaUUpRoFU3oA2gWR0ClbDVvddmhdX2UKGgGaAloD0MIUbzK2sZGh0CUhpRSlGgVTegDaBZHQKVxyYekpJB1fZQoaAZoCWgPQwhbsirCrUyDQJSGlFKUaBVN6ANoFkdApXddbiZOSHV9lChoBmgJaA9DCKVPq+hPRIZAlIaUUpRoFU3oA2gWR0ClfPWyLQ5WdX2UKGgGaAloD0MIC2E1lnCXhkCUhpRSlGgVTegDaBZHQKWCi6JZW7x1fZQoaAZoCWgPQwj/sRAdonWOQJSGlFKUaBVN6ANoFkdApYgQbQ1JlXV9lChoBmgJaA9DCLrYtFLoCI5AlIaUUpRoFU3oA2gWR0CljaOpS75EdX2UKGgGaAloD0MIrJFdaVljjECUhpRSlGgVTegDaBZHQKWTLzcynDR1fZQoaAZoCWgPQwjg9gSJrcyKQJSGlFKUaBVN6ANoFkdApZi2B8QZoHV9lChoBmgJaA9DCP8iaMxk24NAlIaUUpRoFU3oA2gWR0ClnjsAeaKDdX2UKGgGaAloD0MIURa+vtYRh0CUhpRSlGgVTegDaBZHQKWj0APNFBp1fZQoaAZoCWgPQwghIjXt4q2CQJSGlFKUaBVN6ANoFkdApalbc9GI9HV9lChoBmgJaA9DCMRafAqA541AlIaUUpRoFU3oA2gWR0ClruQOnVG1dX2UKGgGaAloD0MIm3Eaoqq1jECUhpRSlGgVTegDaBZHQKW0fDUmUnp1fZQoaAZoCWgPQwiEm4wqw+WKQJSGlFKUaBVN6ANoFkdApboUejmCAnV9lChoBmgJaA9DCF9cqtJWD4tAlIaUUpRoFU3oA2gWR0Clv6GYBvJjdX2UKGgGaAloD0MIhqxu9ZxmiUCUhpRSlGgVTegDaBZHQKXFOtPpIMB1fZQoaAZoCWgPQwjvHTUmZNqIQJSGlFKUaBVN6ANoFkdApcrC8OCoTHV9lChoBmgJaA9DCNAM4gObgI1AlIaUUpRoFU3oA2gWR0Cl0E0EHMUzdWUu"
|
87 |
+
},
|
88 |
+
"ep_success_buffer": {
|
89 |
+
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
91 |
+
},
|
92 |
+
"_n_updates": 1000000,
|
93 |
+
"buffer_size": 1,
|
94 |
+
"batch_size": 100,
|
95 |
+
"learning_starts": 100,
|
96 |
+
"tau": 0.005,
|
97 |
+
"gamma": 0.99,
|
98 |
+
"gradient_steps": -1,
|
99 |
+
"optimize_memory_usage": false,
|
100 |
+
"replay_buffer_class": {
|
101 |
+
":type:": "<class 'abc.ABCMeta'>",
|
102 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
103 |
+
"__module__": "stable_baselines3.common.buffers",
|
104 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
105 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x153e0b250>",
|
106 |
+
"add": "<function ReplayBuffer.add at 0x153e0b2e0>",
|
107 |
+
"sample": "<function ReplayBuffer.sample at 0x153e0b370>",
|
108 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x153e0b400>",
|
109 |
+
"__abstractmethods__": "frozenset()",
|
110 |
+
"_abc_impl": "<_abc._abc_data object at 0x153e03f40>"
|
111 |
+
},
|
112 |
+
"replay_buffer_kwargs": {},
|
113 |
+
"train_freq": {
|
114 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
115 |
+
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
116 |
+
},
|
117 |
+
"use_sde_at_warmup": false,
|
118 |
+
"policy_delay": 1,
|
119 |
+
"target_noise_clip": 0.0,
|
120 |
+
"target_policy_noise": 0.1,
|
121 |
+
"actor_batch_norm_stats": [],
|
122 |
+
"critic_batch_norm_stats": [],
|
123 |
+
"actor_batch_norm_stats_target": [],
|
124 |
+
"critic_batch_norm_stats_target": []
|
125 |
+
}
|
ddpg-CartpoleDMC-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da847fad2037ddb02726800e4a0df41f4381cdeb2db097268415452192dbfc6e
|
3 |
+
size 1492509
|
ddpg-CartpoleDMC-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ddpg-CartpoleDMC-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6e31e14f626aa13b39aa9599bbc2098dabbe353811f68cff712d31cbd29fca9
|
3 |
+
size 126013
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 991.7419097999998, "std_reward": 0.45462611289097343, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T16:57:59.429907"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e4938adfe4c1ee50bc2dc3f220e636d4cd5d641becf774bb40109a6b2bea90b
|
3 |
+
size 32968
|