Quentin Gallouédec commited on
Commit
f0dbd9b
·
1 Parent(s): 4744190

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -186.96 +/- 111.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **DDPG** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env Pendulum-v1 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env Pendulum-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env Pendulum-v1 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env Pendulum-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env Pendulum-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env Pendulum-v1 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('buffer_size', 200000),
66
+ ('gamma', 0.98),
67
+ ('gradient_steps', -1),
68
+ ('learning_rate', 0.001),
69
+ ('learning_starts', 10000),
70
+ ('n_timesteps', 20000),
71
+ ('noise_std', 0.1),
72
+ ('noise_type', 'normal'),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
75
+ ('train_freq', [1, 'episode']),
76
+ ('normalize', False)])
77
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Pendulum-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2415310802
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Pendulum-v1__ddpg__2415310802__1671827730
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - gamma
5
+ - 0.98
6
+ - - gradient_steps
7
+ - -1
8
+ - - learning_rate
9
+ - 0.001
10
+ - - learning_starts
11
+ - 10000
12
+ - - n_timesteps
13
+ - 20000
14
+ - - noise_std
15
+ - 0.1
16
+ - - noise_type
17
+ - normal
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - train_freq
23
+ - - 1
24
+ - episode
ddpg-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:838c3e09b91e6d67a1560b475e7198d697cc18e18a62f3cc485ac461fd6d85cc
3
+ size 3955648
ddpg-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
ddpg-Pendulum-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:544ade46d8257d2ca8bc1d8695eac899bd7bcc80ffbebff18da97e53feb17551
3
+ size 982447
ddpg-Pendulum-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b7032fb6f63c7195b15ceda375173cea6cb12f1fe4ceabdd022541330c445db
3
+ size 985647
ddpg-Pendulum-v1/data ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7fac6f1ee940>",
8
+ "_build": "<function TD3Policy._build at 0x7fac6f1ee9d0>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fac6f1eea60>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7fac6f1eeaf0>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7fac6f1eeb80>",
12
+ "forward": "<function TD3Policy.forward at 0x7fac6f1eec10>",
13
+ "_predict": "<function TD3Policy._predict at 0x7fac6f1eeca0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fac6f1eed30>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7fac6f1f4300>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ],
24
+ "n_critics": 1
25
+ },
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
29
+ "dtype": "float32",
30
+ "_shape": [
31
+ 3
32
+ ],
33
+ "low": "[-1. -1. -8.]",
34
+ "high": "[1. 1. 8.]",
35
+ "bounded_below": "[ True True True]",
36
+ "bounded_above": "[ True True True]",
37
+ "_np_random": null
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
42
+ "dtype": "float32",
43
+ "_shape": [
44
+ 1
45
+ ],
46
+ "low": "[-2.]",
47
+ "high": "[2.]",
48
+ "bounded_below": "[ True]",
49
+ "bounded_above": "[ True]",
50
+ "_np_random": "RandomState(MT19937)"
51
+ },
52
+ "n_envs": 1,
53
+ "num_timesteps": 20000,
54
+ "_total_timesteps": 20000,
55
+ "_num_timesteps_at_start": 0,
56
+ "seed": 0,
57
+ "action_noise": {
58
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
59
+ ":serialized:": "gAWV6gAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAYWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWCAAAAAAAAACamZmZmZm5P5RoD0sBhZRoE3SUUpR1Yi4=",
60
+ "_mu": "[0.]",
61
+ "_sigma": "[0.1]"
62
+ },
63
+ "start_time": 1671827732798257385,
64
+ "learning_rate": {
65
+ ":type:": "<class 'function'>",
66
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
67
+ },
68
+ "tensorboard_log": "runs/Pendulum-v1__ddpg__2415310802__1671827730/Pendulum-v1",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
72
+ },
73
+ "_last_obs": null,
74
+ "_last_episode_starts": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
77
+ },
78
+ "_last_original_obs": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAK37fz8rLTy8a2gUvpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
81
+ },
82
+ "_episode_num": 100,
83
+ "use_sde": false,
84
+ "sde_sample_freq": -1,
85
+ "_current_progress_remaining": 0.0,
86
+ "ep_info_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQyCXOBLAisCUhpRSlIwBbJRLyIwBdJRHP+1oysS00Fd1fZQoaAZoCWgPQwiTV+cYgBKQwJSGlFKUaBVLyGgWRz/uVI7NjbztdX2UKGgGaAloD0MIDMnJxB10lMCUhpRSlGgVS8hoFkc/7z+tKZlWfnV9lChoBmgJaA9DCNqpudwQR5vAlIaUUpRoFUvIaBZHP/AU1Q66reZ1fZQoaAZoCWgPQwiWCFT/8L2VwJSGlFKUaBVLyGgWRz/wjOPeYUnHdX2UKGgGaAloD0MIw0gvaqfMkMCUhpRSlGgVS8hoFkc/8QEs8PnSv3V9lChoBmgJaA9DCLu2t1tizpDAlIaUUpRoFUvIaBZHP/F13dKujh11fZQoaAZoCWgPQwg/qmG/l9iVwJSGlFKUaBVLyGgWRz/x6lgtvn8sdX2UKGgGaAloD0MINSpwsk3djcCUhpRSlGgVS8hoFkc/8mEBbOeJ53V9lChoBmgJaA9DCBhgH52KEJLAlIaUUpRoFUvIaBZHP/LVSn+AEuB1fZQoaAZoCWgPQwi7nX3lIYSUwJSGlFKUaBVLyGgWRz/zSjUNKAavdX2UKGgGaAloD0MIDqMgeEzFm8CUhpRSlGgVS8hoFkc/877qIJqqO3V9lChoBmgJaA9DCPcGX5gs+orAlIaUUpRoFUvIaBZHP/Q1pCa7Vax1fZQoaAZoCWgPQwgv+DQnj6mVwJSGlFKUaBVLyGgWRz/0qk/KQq7RdX2UKGgGaAloD0MIi1OthSlZlsCUhpRSlGgVS8hoFkc/9SBK+SKWLXV9lChoBmgJaA9DCLN+MzE9bozAlIaUUpRoFUvIaBZHP/WU2UB4lhR1fZQoaAZoCWgPQwjZtb3d4o2WwJSGlFKUaBVLyGgWRz/2C9M9KVY7dX2UKGgGaAloD0MIfo/66wUXmMCUhpRSlGgVS8hoFkc/9oDwH7gsLHV9lChoBmgJaA9DCM6I0t7APYvAlIaUUpRoFUvIaBZHP/b1wHZ9NN91fZQoaAZoCWgPQwiXV663rdiNwJSGlFKUaBVLyGgWRz/3alP8AJb/dX2UKGgGaAloD0MIPudu1xvOlsCUhpRSlGgVS8hoFkc/9+FlCkXUIHV9lChoBmgJaA9DCBu7RPUW9Y7AlIaUUpRoFUvIaBZHP/hWM0gr6Lx1fZQoaAZoCWgPQwi7KeW1MtSVwJSGlFKUaBVLyGgWRz/4yyyD7IkrdX2UKGgGaAloD0MInWNA9ooQksCUhpRSlGgVS8hoFkc/+T/cWTHKfXV9lChoBmgJaA9DCGztfarayJDAlIaUUpRoFUvIaBZHP/m2n889wFV1fZQoaAZoCWgPQwh4RIXq5raMwJSGlFKUaBVLyGgWRz/6KiO/+Kj0dX2UKGgGaAloD0MIrp0oCelxjcCUhpRSlGgVS8hoFkc/+p1dPci4a3V9lChoBmgJaA9DCMECmDLwW4jAlIaUUpRoFUvIaBZHP/sQw9JSR8t1fZQoaAZoCWgPQwjm6PF7+8aVwJSGlFKUaBVLyGgWRz/7hmseXAuadX2UKGgGaAloD0MI4jlbQPi7kMCUhpRSlGgVS8hoFkc/+/oUzsQd0nV9lChoBmgJaA9DCFSobi4+OInAlIaUUpRoFUvIaBZHP/xuP3i704B1fZQoaAZoCWgPQwieRe9UgDSKwJSGlFKUaBVLyGgWRz/84vWYnfEXdX2UKGgGaAloD0MI+b64VOUEjMCUhpRSlGgVS8hoFkc//Vr1uivgWXV9lChoBmgJaA9DCD2YFB9vvZDAlIaUUpRoFUvIaBZHP/3Pgeii7Cl1fZQoaAZoCWgPQwh88xsmWoWXwJSGlFKUaBVLyGgWRz/+Q+hXbM5fdX2UKGgGaAloD0MIs5YC0j7ClcCUhpRSlGgVS8hoFkc//rh86V+qi3V9lChoBmgJaA9DCDV5ympaZJTAlIaUUpRoFUvIaBZHP/8wQlKK5091fZQoaAZoCWgPQwhqFJLMamSLwJSGlFKUaBVLyGgWRz//pGBnSOR1dX2UKGgGaAloD0MIeouH95xtmsCUhpRSlGgVS8hoFkdAAAwg1WKdhHV9lChoBmgJaA9DCBpSRfEajJfAlIaUUpRoFUvIaBZHQABF/H5rP+p1fZQoaAZoCWgPQwiDMLd7mfqYwJSGlFKUaBVLyGgWR0AAgT7EYO2BdX2UKGgGaAloD0MIRs1XyWf6lcCUhpRSlGgVS8hoFkdAALsqJ/G2kXV9lChoBmgJaA9DCM9OBkfZupfAlIaUUpRoFUvIaBZHQAD1LBbfP5Z1fZQoaAZoCWgPQwggXWxaydeKwJSGlFKUaBVLyGgWR0ABLt5UtI07dX2UKGgGaAloD0MIqaW5FYKhisCUhpRSlGgVS8hoFkdAAWqJ/G2kSHV9lChoBmgJaA9DCDULtDuUbZTAlIaUUpRoFUvIaBZHQAGk/8l5WzZ1fZQoaAZoCWgPQwihaYmVAZiWwJSGlFKUaBVLyGgWR0AB3wG4ZuQ7dX2UKGgGaAloD0MIdjOjH+0GmsCUhpRSlGgVS8hoFkdAAhlCCz1K5HV9lChoBmgJaA9DCIeowp/hsovAlIaUUpRoFUvIaBZHQAJVc+qzZ6F1fZQoaAZoCWgPQwiFBmLZbLyawJSGlFKUaBVLyGgWR0ACj0163RXwdX2UKGgGaAloD0MIliGOdTFQksCUhpRSlGgVS8hoFkdABOeumrKeTXV9lChoBmgJaA9DCCBdbFpZC57AlIaUUpRoFUvIaBZHQAuDs+mm+Cd1fZQoaAZoCWgPQwgMXB5rFviVwJSGlFKUaBVLyGgWR0ARDND+irT6dX2UKGgGaAloD0MIT1lN1yMilcCUhpRSlGgVS8hoFkdAFFX2/SH/LnV9lChoBmgJaA9DCGH9n8OsBJfAlIaUUpRoFUvIaBZHQBehoIv8IiV1fZQoaAZoCWgPQwgqcLINvKWXwJSGlFKUaBVLyGgWR0Aa6ncclw98dX2UKGgGaAloD0MIoiqm0v+NkMCUhpRSlGgVS8hoFkdAHjBH09QoC3V9lChoBmgJaA9DCOer5GPX0JDAlIaUUpRoFUvIaBZHQCC23UhFEzB1fZQoaAZoCWgPQwg75dGNsKSOwJSGlFKUaBVLyGgWR0AiWUvf0mMPdX2UKGgGaAloD0MI3Eqvzca6IcCUhpRSlGgVS8hoFkdAI/nktEofCHV9lChoBmgJaA9DCEksKXdfQIzAlIaUUpRoFUvIaBZHQCWfYcvM8ox1fZQoaAZoCWgPQwjcSxqjVa2HwJSGlFKUaBVLyGgWR0AnQyIHkcS5dX2UKGgGaAloD0MIut3LfbJhcMCUhpRSlGgVS8hoFkdAKOcrAgxJunV9lChoBmgJaA9DCHwMVpxqJ3HAlIaUUpRoFUvIaBZHQCqMLv1DjR51fZQoaAZoCWgPQwiFRNrGH2NgwJSGlFKUaBVLyGgWR0AsMLrHEMspdX2UKGgGaAloD0MI8UdRZy71dcCUhpRSlGgVS8hoFkdALdFA/s3Q2XV9lChoBmgJaA9DCKVMamgDDWDAlIaUUpRoFUvIaBZHQC92xbB42TB1fZQoaAZoCWgPQwjs3R/vVbxfwJSGlFKUaBVLyGgWR0AwjMxXXAdodX2UKGgGaAloD0MI8fJ0riiDXMCUhpRSlGgVS8hoFkdAMV9qk/KQrHV9lChoBmgJaA9DCI3PZP88AV/AlIaUUpRoFUvIaBZHQDIwxyn1nNB1fZQoaAZoCWgPQwipS8YxkvRfwJSGlFKUaBVLyGgWR0AzAw1ivxH5dX2UKGgGaAloD0MIQKa1aWxDX8CUhpRSlGgVS8hoFkdAM8wKa5PM0XV9lChoBmgJaA9DCHO4VnvY3V3AlIaUUpRoFUvIaBZHQDSV8jRlYlp1fZQoaAZoCWgPQwjjGwqfLe9twJSGlFKUaBVLyGgWR0A1X+T/yXlbdX2UKGgGaAloD0MINdHno4wYXsCUhpRSlGgVS8hoFkdANiV2mpEQXnV9lChoBmgJaA9DCE+w/zq3HmzAlIaUUpRoFUvIaBZHQDbv8tPHktF1fZQoaAZoCWgPQwjVl6WdmkhewJSGlFKUaBVLyGgWR0A3s9roGIKudX2UKGgGaAloD0MI6Qq2EU828r+UhpRSlGgVS8hoFkdAOGc0P6KtP3V9lChoBmgJaA9DCOdu10tTQl3AlIaUUpRoFUvIaBZHQDkbitJWeYl1fZQoaAZoCWgPQwjULNDukNlewJSGlFKUaBVLyGgWR0A5z2Dg62fDdX2UKGgGaAloD0MI4ugq3V0OXsCUhpRSlGgVS8hoFkdAOoLL2YfGMnV9lChoBmgJaA9DCBHGT+PeC1/AlIaUUpRoFUvIaBZHQDs2zw+dK/V1fZQoaAZoCWgPQwikxRnDnHZfwJSGlFKUaBVLyGgWR0A78/2Cdz4ldX2UKGgGaAloD0MI8kOlETPkX8CUhpRSlGgVS8hoFkdAPL1CCz1K5HV9lChoBmgJaA9DCEioGVJFpHPAlIaUUpRoFUvIaBZHQD2H72tdRix1fZQoaAZoCWgPQwhd34eDhDtewJSGlFKUaBVLyGgWR0A+UqKP4mCzdX2UKGgGaAloD0MI0F59PHStbcCUhpRSlGgVS8hoFkdAPx1fmcOLBXV9lChoBmgJaA9DCIkI/yJoDPe/lIaUUpRoFUvIaBZHQD/nzJ6po9N1fZQoaAZoCWgPQwjfisQENThdwJSGlFKUaBVLyGgWR0BAWVoxpL26dX2UKGgGaAloD0MIvTYbKzHCXMCUhpRSlGgVS8hoFkdAQL55C4SYgXV9lChoBmgJaA9DCN/+XDRk0V/AlIaUUpRoFUvIaBZHQEEjVjI7vG91fZQoaAZoCWgPQwgYJH1aRc1fwJSGlFKUaBVLyGgWR0BBiEw35vcadX2UKGgGaAloD0MI0cq9wKwEXsCUhpRSlGgVS8hoFkdAQe4PPLPldXV9lChoBmgJaA9DCDLk2HqGvFzAlIaUUpRoFUvIaBZHQEJS7ZFocrB1fZQoaAZoCWgPQwixicxc4FpewJSGlFKUaBVLyGgWR0BCt+wC8vmHdX2UKGgGaAloD0MISWO0jqqza8CUhpRSlGgVS8hoFkdAQx0xIre67XV9lChoBmgJaA9DCBWMSuoENPu/lIaUUpRoFUvIaBZHQEOB/G2kSEl1fZQoaAZoCWgPQwgy6ITQQeBswJSGlFKUaBVLyGgWR0BD5wAuIyj6dX2UKGgGaAloD0MIkq6ZfLOhXsCUhpRSlGgVS8hoFkdAREwFRpDeCXV9lChoBmgJaA9DCGnIeJRKU3bAlIaUUpRoFUvIaBZHQESwXgLqlgt1ZS4="
89
+ },
90
+ "ep_success_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
93
+ },
94
+ "_n_updates": 10000,
95
+ "buffer_size": 1,
96
+ "batch_size": 100,
97
+ "learning_starts": 10000,
98
+ "tau": 0.005,
99
+ "gamma": 0.98,
100
+ "gradient_steps": -1,
101
+ "optimize_memory_usage": false,
102
+ "replay_buffer_class": {
103
+ ":type:": "<class 'abc.ABCMeta'>",
104
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
105
+ "__module__": "stable_baselines3.common.buffers",
106
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
107
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fac6f1ea430>",
108
+ "add": "<function ReplayBuffer.add at 0x7fac6f1ea4c0>",
109
+ "sample": "<function ReplayBuffer.sample at 0x7fac6f1ea550>",
110
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fac6f1ea5e0>",
111
+ "__abstractmethods__": "frozenset()",
112
+ "_abc_impl": "<_abc._abc_data object at 0x7fac6f1eb100>"
113
+ },
114
+ "replay_buffer_kwargs": {},
115
+ "train_freq": {
116
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
117
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
118
+ },
119
+ "use_sde_at_warmup": false,
120
+ "policy_delay": 1,
121
+ "target_noise_clip": 0.0,
122
+ "target_policy_noise": 0.1,
123
+ "_action_repeat": [
124
+ null
125
+ ],
126
+ "surgeon": null,
127
+ "actor_batch_norm_stats": [],
128
+ "critic_batch_norm_stats": [],
129
+ "actor_batch_norm_stats_target": [],
130
+ "critic_batch_norm_stats_target": [],
131
+ "_last_action": {
132
+ ":type:": "<class 'numpy.ndarray'>",
133
+ ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAEgI6j+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLAYaUjAFDlHSUUpQu"
134
+ }
135
+ }
ddpg-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf2942c2c37375b8da1d77482c9c93b1ad5e5de53d550efa3ea2092889ca5dd
3
+ size 1966365
ddpg-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2c4ef156504a461e6429090c46cd07e94a358b37e1e6ef11d264b5341cf4a11
3
+ size 371049
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -186.9558699, "std_reward": 111.06011659058022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T17:25:29.411904"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d12706544b9ffdf8d80cd0ac484fd6a90442c355a4a6cc50aa5ff2f1a9671c8e
3
+ size 2841