Quentin Gallouédec
commited on
Commit
·
922467a
1
Parent(s):
6095eca
Initial commit
Browse files- .gitattributes +1 -0
- README.md +77 -0
- args.yml +79 -0
- config.yml +24 -0
- ddpg-Pendulum-v1.zip +3 -0
- ddpg-Pendulum-v1/_stable_baselines3_version +1 -0
- ddpg-Pendulum-v1/actor.optimizer.pth +3 -0
- ddpg-Pendulum-v1/critic.optimizer.pth +3 -0
- ddpg-Pendulum-v1/data +127 -0
- ddpg-Pendulum-v1/policy.pth +3 -0
- ddpg-Pendulum-v1/pytorch_variables.pth +3 -0
- ddpg-Pendulum-v1/system_info.txt +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -189.75 +/- 112.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **DDPG** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env Pendulum-v1 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ddpg --env Pendulum-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env Pendulum-v1 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ddpg --env Pendulum-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ddpg --env Pendulum-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ddpg --env Pendulum-v1 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('buffer_size', 200000),
|
66 |
+
('gamma', 0.98),
|
67 |
+
('gradient_steps', -1),
|
68 |
+
('learning_rate', 0.001),
|
69 |
+
('learning_starts', 10000),
|
70 |
+
('n_timesteps', 20000),
|
71 |
+
('noise_std', 0.1),
|
72 |
+
('noise_type', 'normal'),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
75 |
+
('train_freq', [1, 'episode']),
|
76 |
+
('normalize', False)])
|
77 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ddpg
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- Pendulum-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 20
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 5
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 3347268901
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/Pendulum-v1__ddpg__3347268901__1670941254
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- openrlbenchmark
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - buffer_size
|
3 |
+
- 200000
|
4 |
+
- - gamma
|
5 |
+
- 0.98
|
6 |
+
- - gradient_steps
|
7 |
+
- -1
|
8 |
+
- - learning_rate
|
9 |
+
- 0.001
|
10 |
+
- - learning_starts
|
11 |
+
- 10000
|
12 |
+
- - n_timesteps
|
13 |
+
- 20000
|
14 |
+
- - noise_std
|
15 |
+
- 0.1
|
16 |
+
- - noise_type
|
17 |
+
- normal
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[400, 300])
|
22 |
+
- - train_freq
|
23 |
+
- - 1
|
24 |
+
- episode
|
ddpg-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bcea8c27994c16ff8d2ba0fc9bcb93cc101c55c8f308396f97f7a9df91eb663
|
3 |
+
size 3955474
|
ddpg-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
ddpg-Pendulum-v1/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:293b70683649dd0add84377e9bf1c5dbef4ecd23d8da97d03377505094e1d44e
|
3 |
+
size 982447
|
ddpg-Pendulum-v1/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a02f3ff86892f1ef31f3729a7bfa2272c818dd26cdefb1c4377b5f068183c455
|
3 |
+
size 985647
|
ddpg-Pendulum-v1/data
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x7ff821f6e940>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x7ff821f6e9d0>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7ff821f6ea60>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x7ff821f6eaf0>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x7ff821f6eb80>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x7ff821f6ec10>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x7ff821f6eca0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x7ff821f6ed30>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff821f70c80>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
400,
|
22 |
+
300
|
23 |
+
],
|
24 |
+
"n_critics": 1
|
25 |
+
},
|
26 |
+
"observation_space": {
|
27 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
28 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
29 |
+
"dtype": "float32",
|
30 |
+
"_shape": [
|
31 |
+
3
|
32 |
+
],
|
33 |
+
"low": "[-1. -1. -8.]",
|
34 |
+
"high": "[1. 1. 8.]",
|
35 |
+
"bounded_below": "[ True True True]",
|
36 |
+
"bounded_above": "[ True True True]",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"action_space": {
|
40 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
41 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
42 |
+
"dtype": "float32",
|
43 |
+
"_shape": [
|
44 |
+
1
|
45 |
+
],
|
46 |
+
"low": "[-2.]",
|
47 |
+
"high": "[2.]",
|
48 |
+
"bounded_below": "[ True]",
|
49 |
+
"bounded_above": "[ True]",
|
50 |
+
"_np_random": "RandomState(MT19937)"
|
51 |
+
},
|
52 |
+
"n_envs": 1,
|
53 |
+
"num_timesteps": 20000,
|
54 |
+
"_total_timesteps": 20000,
|
55 |
+
"_num_timesteps_at_start": 0,
|
56 |
+
"seed": 0,
|
57 |
+
"action_noise": {
|
58 |
+
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
|
59 |
+
":serialized:": "gAWV6gAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAYWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWCAAAAAAAAACamZmZmZm5P5RoD0sBhZRoE3SUUpR1Yi4=",
|
60 |
+
"_mu": "[0.]",
|
61 |
+
"_sigma": "[0.1]"
|
62 |
+
},
|
63 |
+
"start_time": 1670941256513327760,
|
64 |
+
"learning_rate": {
|
65 |
+
":type:": "<class 'function'>",
|
66 |
+
":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
67 |
+
},
|
68 |
+
"tensorboard_log": "runs/Pendulum-v1__ddpg__3347268901__1670941254/Pendulum-v1",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": null,
|
74 |
+
"_last_episode_starts": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
77 |
+
},
|
78 |
+
"_last_original_obs": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAACvefz+wlwO91keEPZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
|
81 |
+
},
|
82 |
+
"_episode_num": 100,
|
83 |
+
"use_sde": false,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": 0.0,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg8DKoaUamsCUhpRSlIwBbJRLyIwBdJRHP+ueq7yxzJZ1fZQoaAZoCWgPQwiCrKdW/xuKwJSGlFKUaBVLyGgWRz/skB0ZFXq8dX2UKGgGaAloD0MIHofB/NV/jsCUhpRSlGgVS8hoFkc/7YEB8x9G7XV9lChoBmgJaA9DCEM7p1kAh4rAlIaUUpRoFUvIaBZHP+5ytmthd+p1fZQoaAZoCWgPQwjm6scmaViRwJSGlFKUaBVLyGgWRz/vahYeT3ZgdX2UKGgGaAloD0MIFJfjFcgyjsCUhpRSlGgVS8hoFkc/8CxfOUt7KXV9lChoBmgJaA9DCNLfS+HRmJvAlIaUUpRoFUvIaBZHP/CjaPCEYfp1fZQoaAZoCWgPQwj5254gQYSbwJSGlFKUaBVLyGgWRz/xGj0th/iHdX2UKGgGaAloD0MIGoums3NpksCUhpRSlGgVS8hoFkc/8ZYdQwblzXV9lChoBmgJaA9DCAG9cOcC+ZzAlIaUUpRoFUvIaBZHP/INCJGe+VV1fZQoaAZoCWgPQwjVB5J37r+NwJSGlFKUaBVLyGgWRz/yg7o0Q9RrdX2UKGgGaAloD0MIi4o4nSQCjMCUhpRSlGgVS8hoFkc/8v5TIeYD1XV9lChoBmgJaA9DCF2mJsFLfJTAlIaUUpRoFUvIaBZHP/N3Ux20Re11fZQoaAZoCWgPQwjpuYWu5N6LwJSGlFKUaBVLyGgWRz/z7u+h4+r3dX2UKGgGaAloD0MIGhU42YYhiMCUhpRSlGgVS8hoFkc/9GWnjyWiUXV9lChoBmgJaA9DCAStwJCVzpHAlIaUUpRoFUvIaBZHP/TcZtNzr/t1fZQoaAZoCWgPQwhEozuIfXSVwJSGlFKUaBVLyGgWRz/1Va8pTdcjdX2UKGgGaAloD0MImUuqtls2lcCUhpRSlGgVS8hoFkc/9cy9EkSmInV9lChoBmgJaA9DCDTyecXTD5PAlIaUUpRoFUvIaBZHP/ZEMb3oLXt1fZQoaAZoCWgPQwjcLckBO0eOwJSGlFKUaBVLyGgWRz/2u2JBPbfxdX2UKGgGaAloD0MIWtb9Y+EklMCUhpRSlGgVS8hoFkc/9zS0BwMpgHV9lChoBmgJaA9DCKRskbQbNIzAlIaUUpRoFUvIaBZHP/esSCe2/i51fZQoaAZoCWgPQwjmJJS+EDuOwJSGlFKUaBVLyGgWRz/4I9cKPXCkdX2UKGgGaAloD0MIAHFXr4KLj8CUhpRSlGgVS8hoFkc/+JtwaR6ni3V9lChoBmgJaA9DCHmQniKHGZLAlIaUUpRoFUvIaBZHP/kU2DQJHAh1fZQoaAZoCWgPQwjjqUcajJSUwJSGlFKUaBVLyGgWRz/5i5AhStNjdX2UKGgGaAloD0MIn3djQSFRlcCUhpRSlGgVS8hoFkc/+gKG+K0laHV9lChoBmgJaA9DCDY7Un2ngI7AlIaUUpRoFUvIaBZHP/p5avA44qB1fZQoaAZoCWgPQwgrvqHwqSOXwJSGlFKUaBVLyGgWRz/6+2/i5uqFdX2UKGgGaAloD0MI/rRRnb7Fl8CUhpRSlGgVS8hoFkc/+3I+4b0e2nV9lChoBmgJaA9DCBLaci7FAozAlIaUUpRoFUvIaBZHP/vpS75Ec811fZQoaAZoCWgPQwhgyyvXuyWIwJSGlFKUaBVLyGgWRz/8YFA3T/hmdX2UKGgGaAloD0MI5iDoaKX9kMCUhpRSlGgVS8hoFkc//NnEl3QlbHV9lChoBmgJaA9DCAtET8rkO4fAlIaUUpRoFUvIaBZHP/1RhttQ9A51fZQoaAZoCWgPQwjTFtf43GSUwJSGlFKUaBVLyGgWRz/9yOFQEZBLdX2UKGgGaAloD0MI6fAQxk/Ii8CUhpRSlGgVS8hoFkc//kBYFJQLu3V9lChoBmgJaA9DCKDf92/OfpLAlIaUUpRoFUvIaBZHP/65ylvZRKp1fZQoaAZoCWgPQwgvxOqP0DGOwJSGlFKUaBVLyGgWRz//MQ2/BWPtdX2UKGgGaAloD0MIVgvsMeHYlcCUhpRSlGgVS8hoFkc//6iGnGbTdHV9lChoBmgJaA9DCJusUQ8RZpXAlIaUUpRoFUvIaBZHQAAP6sQumJp1fZQoaAZoCWgPQwhdhv90UwyQwJSGlFKUaBVLyGgWR0AATHhjvuw5dX2UKGgGaAloD0MImnrdIrDLi8CUhpRSlGgVS8hoFkdAAIgh8pkPMHV9lChoBmgJaA9DCCE7b2MTaZLAlIaUUpRoFUvIaBZHQADDpcHGCI11fZQoaAZoCWgPQwgqAMYzyJiUwJSGlFKUaBVLyGgWR0AA/vphWo3rdX2UKGgGaAloD0MIRPgXQSPQmcCUhpRSlGgVS8hoFkdAATvBJqZc9nV9lChoBmgJaA9DCDQw8rJ265TAlIaUUpRoFUvIaBZHQAF7RfF72L51fZQoaAZoCWgPQwhX6INlzJGcwJSGlFKUaBVLyGgWR0ABtv4ubqhUdX2UKGgGaAloD0MIQUXVr1ROksCUhpRSlGgVS8hoFkdAAfJq7Ackt3V9lChoBmgJaA9DCDkM5q/AqZjAlIaUUpRoFUvIaBZHQAIvKMefZmJ1fZQoaAZoCWgPQwgRww5jsp2UwJSGlFKUaBVLyGgWR0ACaoqCpWFOdX2UKGgGaAloD0MIUtSZe5gZmMCUhpRSlGgVS8hoFkdABOTtb9qDb3V9lChoBmgJaA9DCJc48kBUC5vAlIaUUpRoFUvIaBZHQAvHied07r91fZQoaAZoCWgPQwgu46YGCgGawJSGlFKUaBVLyGgWR0ARTUtqYZ2qdX2UKGgGaAloD0MIf93pzlO5l8CUhpRSlGgVS8hoFkdAFKM5OrQw9XV9lChoBmgJaA9DCL2KjA7YPpfAlIaUUpRoFUvIaBZHQBfklNUOuq51fZQoaAZoCWgPQwgLmSuDSmyTwJSGlFKUaBVLyGgWR0AbLos7MgU2dX2UKGgGaAloD0MIG53zUxxtk8CUhpRSlGgVS8hoFkdAHniADq4YrXV9lChoBmgJaA9DCP3AVZ4AqpfAlIaUUpRoFUvIaBZHQCDrj/+85CF1fZQoaAZoCWgPQwjkvtU60SaPwJSGlFKUaBVLyGgWR0AinVp9JBgNdX2UKGgGaAloD0MI4e6s3VZRi8CUhpRSlGgVS8hoFkdAJE62nbZezHV9lChoBmgJaA9DCFjH8UOlcSfAlIaUUpRoFUvIaBZHQCYC6MBIWgx1fZQoaAZoCWgPQwiMFMrCl4WAwJSGlFKUaBVLyGgWR0AntTb349HMdX2UKGgGaAloD0MIjpWYZyWuYMCUhpRSlGgVS8hoFkdAKUyFXaJyhnV9lChoBmgJaA9DCOl/uRZtvHDAlIaUUpRoFUvIaBZHQCrd0FKTSst1fZQoaAZoCWgPQwhkXHFxVDFxwJSGlFKUaBVLyGgWR0AsZEPUaybAdX2UKGgGaAloD0MIrmad8X37X8CUhpRSlGgVS8hoFkdALeeo1k1/D3V9lChoBmgJaA9DCKJhMepaL3DAlIaUUpRoFUvIaBZHQC+DyjHn2Zl1fZQoaAZoCWgPQwiAKQMHtHlfwJSGlFKUaBVLyGgWR0Awm3azu4PPdX2UKGgGaAloD0MIbCbfbHPDAMCUhpRSlGgVS8hoFkdAMXYW+GoJiXV9lChoBmgJaA9DCLth26JMI27AlIaUUpRoFUvIaBZHQDJOo99tuUF1fZQoaAZoCWgPQwieCrjn+dMDwJSGlFKUaBVLyGgWR0AzKMAmzBykdX2UKGgGaAloD0MI205bI4KgbMCUhpRSlGgVS8hoFkdAM/+S4e9zwXV9lChoBmgJaA9DCLdfPlkxfV/AlIaUUpRoFUvIaBZHQDTVWJaaCtl1fZQoaAZoCWgPQwgFMjuLHhV2wJSGlFKUaBVLyGgWR0A1sPFNtZV5dX2UKGgGaAloD0MI4BKAf0qEXsCUhpRSlGgVS8hoFkdANoqs+3YthHV9lChoBmgJaA9DCE4K8x7nIW7AlIaUUpRoFUvIaBZHQDdkqrilzlt1fZQoaAZoCWgPQwgWvr7WpUb1v5SGlFKUaBVLyGgWR0A4Pr5ZbILgdX2UKGgGaAloD0MIi4ujchO1/b+UhpRSlGgVS8hoFkdAORT5j6N2knV9lChoBmgJaA9DCF2lu+tsKADAlIaUUpRoFUvIaBZHQDnu0UoKD011fZQoaAZoCWgPQwiRYoBEE6BfwJSGlFKUaBVLyGgWR0A6x8zhxYJWdX2UKGgGaAloD0MIF7t9VhlHdcCUhpRSlGgVS8hoFkdAO6Sv1UVBU3V9lChoBmgJaA9DCD6zJECNgXXAlIaUUpRoFUvIaBZHQDyC6y0KJEZ1fZQoaAZoCWgPQwhOQukLIcVfwJSGlFKUaBVLyGgWR0A9W9Pk7wKCdX2UKGgGaAloD0MIgqj7AKSWAMCUhpRSlGgVS8hoFkdAPjbJGOMl1XV9lChoBmgJaA9DCPdbO1ESbXHAlIaUUpRoFUvIaBZHQD8SHDaXa8J1fZQoaAZoCWgPQwhwlScQdhZdwJSGlFKUaBVLyGgWR0A/7CUornTzdX2UKGgGaAloD0MIEOZ2L/ffXcCUhpRSlGgVS8hoFkdAQGJ0ZFXq7nV9lChoBmgJaA9DCE/MejGUql/AlIaUUpRoFUvIaBZHQEDO2Ifr8ix1fZQoaAZoCWgPQwgn3ZbIBf1uwJSGlFKUaBVLyGgWR0BBO65Xlr/LdX2UKGgGaAloD0MI6+V3mkw+bsCUhpRSlGgVS8hoFkdAQadpTMqz7nV9lChoBmgJaA9DCLAD54zotXTAlIaUUpRoFUvIaBZHQEISp3os7Mh1fZQoaAZoCWgPQwjXogVoW1ZswJSGlFKUaBVLyGgWR0BCgIE8q4H5dX2UKGgGaAloD0MIZsBZShZ1bMCUhpRSlGgVS8hoFkdAQu3gNwzch3V9lChoBmgJaA9DCARauoJtEF/AlIaUUpRoFUvIaBZHQENXClabF0h1fZQoaAZoCWgPQwhvufqxSZxcwJSGlFKUaBVLyGgWR0BDwaGxlg+hdX2UKGgGaAloD0MIIcztXu4OX8CUhpRSlGgVS8hoFkdARCGlANXo1XV9lChoBmgJaA9DCEW5NH7hiWzAlIaUUpRoFUvIaBZHQESB6Tnq3Vl1fZQoaAZoCWgPQwgXSFD8mEhgwJSGlFKUaBVLyGgWR0BE4X3YcvM9dX2UKGgGaAloD0MI8pTVdL2EbsCUhpRSlGgVS8hoFkdARUJ4ptrKvHV9lChoBmgJaA9DCKVJKej2zl3AlIaUUpRoFUvIaBZHQEWjJqZc9nt1ZS4="
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 10000,
|
95 |
+
"buffer_size": 1,
|
96 |
+
"batch_size": 100,
|
97 |
+
"learning_starts": 10000,
|
98 |
+
"tau": 0.005,
|
99 |
+
"gamma": 0.98,
|
100 |
+
"gradient_steps": -1,
|
101 |
+
"optimize_memory_usage": false,
|
102 |
+
"replay_buffer_class": {
|
103 |
+
":type:": "<class 'abc.ABCMeta'>",
|
104 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
105 |
+
"__module__": "stable_baselines3.common.buffers",
|
106 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
107 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7ff821f6a430>",
|
108 |
+
"add": "<function ReplayBuffer.add at 0x7ff821f6a4c0>",
|
109 |
+
"sample": "<function ReplayBuffer.sample at 0x7ff821f6a550>",
|
110 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7ff821f6a5e0>",
|
111 |
+
"__abstractmethods__": "frozenset()",
|
112 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff821f61bc0>"
|
113 |
+
},
|
114 |
+
"replay_buffer_kwargs": {},
|
115 |
+
"train_freq": {
|
116 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
117 |
+
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
118 |
+
},
|
119 |
+
"use_sde_at_warmup": false,
|
120 |
+
"policy_delay": 1,
|
121 |
+
"target_noise_clip": 0.0,
|
122 |
+
"target_policy_noise": 0.1,
|
123 |
+
"actor_batch_norm_stats": [],
|
124 |
+
"critic_batch_norm_stats": [],
|
125 |
+
"actor_batch_norm_stats_target": [],
|
126 |
+
"critic_batch_norm_stats_target": []
|
127 |
+
}
|
ddpg-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78b704183c560e0ce8d9a7cb298aead8f35cb26139d0e5653744cae039dc43c9
|
3 |
+
size 1966365
|
ddpg-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ddpg-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e61098bb84a275eea09be801f07457317566492447d134147c8ddf7452b007e5
|
3 |
+
size 355000
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -189.7478503, "std_reward": 112.81980340778235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T17:24:06.984456"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec883986c5ed6b28723fb72d7843bc3f97acd98c1c9e5bdc5831a1cae4e5190f
|
3 |
+
size 2838
|