Quentin Gallouédec commited on
Commit
39e57e9
·
1 Parent(s): 690ce7a

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCarContinuous-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCarContinuous-v0
16
+ type: MountainCarContinuous-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 94.47 +/- 0.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **MountainCarContinuous-v0**
25
+ This is a trained model of a **SAC** agent playing **MountainCarContinuous-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env MountainCarContinuous-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env MountainCarContinuous-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env MountainCarContinuous-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env MountainCarContinuous-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 512),
66
+ ('buffer_size', 50000),
67
+ ('ent_coef', 0.1),
68
+ ('gamma', 0.9999),
69
+ ('gradient_steps', 32),
70
+ ('learning_rate', 0.0003),
71
+ ('learning_starts', 0),
72
+ ('n_timesteps', 50000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(log_std_init=-3.67, net_arch=[64, 64])'),
75
+ ('tau', 0.01),
76
+ ('train_freq', 32),
77
+ ('use_sde', True),
78
+ ('normalize', False)])
79
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - MountainCarContinuous-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 255703901
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 512
4
+ - - buffer_size
5
+ - 50000
6
+ - - ent_coef
7
+ - 0.1
8
+ - - gamma
9
+ - 0.9999
10
+ - - gradient_steps
11
+ - 32
12
+ - - learning_rate
13
+ - 0.0003
14
+ - - learning_starts
15
+ - 0
16
+ - - n_timesteps
17
+ - 50000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3.67, net_arch=[64, 64])
22
+ - - tau
23
+ - 0.01
24
+ - - train_freq
25
+ - 32
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbaf6fc0a4c569f9044c2fb7bef3c4bd2a0c065af68bcd8a4e01a5a756ce9d4a
3
+ size 257065
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 94.4703057, "std_reward": 0.5356901119675528, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:29:18.161258"}
sac-MountainCarContinuous-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae3680504ca190e19c70083534c65b1d82739001c262201c0344a77e5d0ce5f9
3
+ size 242937
sac-MountainCarContinuous-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
sac-MountainCarContinuous-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2f405ac203a728cc76024d4f33fc71cdf91f1246022f0ac3587c1ffecfa3115
3
+ size 41702
sac-MountainCarContinuous-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2024600dd29cfee1615c8c92acdec785e76c3237466a7adc9f22749e2080c8
3
+ size 81337
sac-MountainCarContinuous-v0/data ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7f6027913ca0>",
8
+ "_build": "<function SACPolicy._build at 0x7f6027913d30>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f6027913dc0>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f6027913e50>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7f6027913ee0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7f6027913f70>",
13
+ "forward": "<function SACPolicy.forward at 0x7f602791b040>",
14
+ "_predict": "<function SACPolicy._predict at 0x7f602791b0d0>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f602791b160>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7f6027917d00>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "log_std_init": -3.67,
22
+ "net_arch": [
23
+ 64,
24
+ 64
25
+ ],
26
+ "use_sde": true
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
31
+ "dtype": "float32",
32
+ "_shape": [
33
+ 2
34
+ ],
35
+ "low": "[-1.2 -0.07]",
36
+ "high": "[0.6 0.07]",
37
+ "bounded_below": "[ True True]",
38
+ "bounded_above": "[ True True]",
39
+ "_np_random": null
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
44
+ "dtype": "float32",
45
+ "_shape": [
46
+ 1
47
+ ],
48
+ "low": "[-1.]",
49
+ "high": "[1.]",
50
+ "bounded_below": "[ True]",
51
+ "bounded_above": "[ True]",
52
+ "_np_random": "RandomState(MT19937)"
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 50016,
56
+ "_total_timesteps": 50000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1671732204848114644,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
64
+ },
65
+ "tensorboard_log": null,
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
74
+ },
75
+ "_last_original_obs": {
76
+ ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAABvY4r4NHhW8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
78
+ },
79
+ "_episode_num": 430,
80
+ "use_sde": true,
81
+ "sde_sample_freq": -1,
82
+ "_current_progress_remaining": -0.000320000000000098,
83
+ "ep_info_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFeyyzHCGeuMAWyUS0eMAXSUR0B0K0ADJU5udX2UKGgGR0BXI7SVnmJWaAdLYmgIR0B0NXB7/n4gdX2UKGgGR0BXwJGSZBszaAdLRWgIR0B0PNeyAxzrdX2UKGgGR0BXRl63RXwLaAdLUWgIR0B0RO9OARTTdX2UKGgGR0BXhk/SpiqiaAdLRmgIR0B0TxnezlcRdX2UKGgGR0BXn98zAN5MaAdLR2gIR0B0Vfaews5GdX2UKGgGR0BW+043m3fAaAdLVmgIR0B0YB9v0h/zdX2UKGgGR0BXc++AVfu1aAdLXWgIR0B0ZzRnezlcdX2UKGgGR0BXrvoRqXWwaAdLTGgIR0B0cT/dZaFFdX2UKGgGR0BXncm8dxQ0aAdLT2gIR0B0eDNeMQ2/dX2UKGgGR0BXllpsXSBtaAdLU2gIR0B0g5F+d9UkdX2UKGgGR0BXokwztTkyaAdLUWgIR0B0i6yeI2wWdX2UKGgGR0BXqdgBtDUmaAdLTWgIR0B0l2dpZfUndX2UKGgGR0BXs7WVeKKpaAdLRWgIR0B0n2T0QK8ddX2UKGgGR0BXkbI91U2laAdLTWgIR0B0p3KeTV2BdX2UKGgGR0BXgMtsenyeaAdLbmgIR0B0tylxffGddX2UKGgGR0BXqM7hegL7aAdLRGgIR0B0vwW43FUAdX2UKGgGR0BXp92TxG2DaAdLSGgIR0B0xvP/rB0qdX2UKGgGR0BXcJzxPO6eaAdLUGgIR0B00sCkoF3ZdX2UKGgGR0BXpg7HQyAQaAdLSGgIR0B02rGaQV9GdX2UKGgGR0BXU3xe9i+daAdLV2gIR0B05oYNy5qedX2UKGgGR0BXquii7CizaAdLTGgIR0B07oHQhOgydX2UKGgGR0BXySNfgJkYaAdLSWgIR0B09nY+Sr5qdX2UKGgGR0BXwmNrCWNWaAdLS2gIR0B1AjZWaMJhdX2UKGgGR0BWt/WH1vl2aAdLrmgIR0B1Fh2eQMhHdX2UKGgGR0BXwyuMdcSoaAdLSWgIR0B1Hh+lTFVDdX2UKGgGR0BXifQnhKlIaAdLTWgIR0B1Kfdgv115dX2UKGgGR0BXgXQla8pTaAdLQmgIR0B1MezcAR02dX2UKGgGR0BXQ/ddmg8KaAdLYGgIR0B1PdSIgvDhdX2UKGgGR0BXqXZwn6VMaAdLSGgIR0B1RdhnanJldX2UKGgGR0BXdLUkOZssaAdLTmgIR0B1UZ7u2JBPdX2UKGgGR0BXRi4Wk8A8aAdLZmgIR0B1XZNN8E3bdX2UKGgGR0BXtVh9b5doaAdLTGgIR0B1ZZuGbkOqdX2UKGgGR0BXbSVKPGQ0aAdLXmgIR0B1cWPEKmbcdX2UKGgGR0BX1zLns9jgaAdLSGgIR0B1eV/FzdULdX2UKGgGR0BXwQJPZZjhaAdLS2gIR0B1hRbD/EOzdX2UKGgGR0BXn2tuDSPVaAdLSmgIR0B1jPndO6/ZdX2UKGgGR0BXqZzgdfb9aAdLSWgIR0B1lQSuhbnpdX2UKGgGR0BYKNvfj0cwaAdLZGgIR0B1oN+/gzgudX2UKGgGR0BXT1hgE2YOaAdLSWgIR0B1rIBbOeJ6dX2UKGgGR0BXPCZOSGJvaAdLZGgIR0B1uGFcpsoEdX2UKGgGR0BXgtUOuq3maAdLRmgIR0B1wF8pkPMCdX2UKGgGR0BX5WEXcgyNaAdLT2gIR0B1yG3lS0jUdX2UKGgGR0BXcJ7CzkZKaAdLSmgIR0B11Ct8uzyCdX2UKGgGR0BXcG9pRGc4aAdLY2gIR0B14BuivgWKdX2UKGgGR0BXn1Q66reZaAdLU2gIR0B16DHjp9qldX2UKGgGR0BXkG2G7BfsaAdLSGgIR0B188Dr7fpEdX2UKGgGR0BV55ZntfG/aAdLnmgIR0B2B7PSlWOqdX2UKGgGR0BXioEfT1CgaAdLUmgIR0B2D9yGSIP9dX2UKGgGR0BXm21D0DlpaAdLVWgIR0B2G6KtPpIMdX2UKGgGR0BXYrMPjGT+aAdLUmgIR0B2I8tI065odX2UKGgGR0BXo/nB+F10aAdLTWgIR0B2L4OH31zydX2UKGgGR0BXpUzwc5sCaAdLTGgIR0B2N4x33YcvdX2UKGgGR0BXXr/0dzXCaAdLTGgIR0B2Q1uqFRHgdX2UKGgGR0BXqQfIS13MaAdLSGgIR0B2S1P8AJb/dX2UKGgGR0BXDtaMaS9vaAdLbmgIR0B2V065oXbedX2UKGgGR0BXlvSx7iQ1aAdLUmgIR0B2YyciGFi8dX2UKGgGR0BXik7jkuHvaAdLRmgIR0B2axXXAdn1dX2UKGgGR0BX40GFBY3eaAdLWWgIR0B2dvw/gR9PdX2UKGgGR0BXy7McIZ62aAdLVWgIR0B2fyQHRkVfdX2UKGgGR0BXhkr08NhFaAdLS2gIR0B2iu5PM0P6dX2UKGgGR0BXO2WY4Qz2aAdLZmgIR0B2lu6+WWyDdX2UKGgGR0BXovUe+23KaAdLSWgIR0B2nwHdGiHqdX2UKGgGR0BXdp3gUDdQaAdLS2gIR0B2qseA/cFhdX2UKGgGR0BXnRyGSIP9aAdLRmgIR0B2ssohIOH4dX2UKGgGR0BXe2JN0vGqaAdLUWgIR0B2uufK6nR+dX2UKGgGR0BXsskY4yXVaAdLS2gIR0B2xrM8ox5+dX2UKGgGR0BXUzuBtk4FaAdLVWgIR0B2zsYdhiLEdX2UKGgGR0BX5wVfu1F6aAdLS2gIR0B22n1HvttzdX2UKGgGR0BXlGXb/Ot5aAdLS2gIR0B24ooG6f8NdX2UKGgGR0BWD8GC7K7qaAdLr2gIR0B29pi2DxsmdX2UKGgGR0BXnv0qYqoZaAdLUmgIR0B3AlG9YfW+dX2UKGgGR0BXK6gZjx0/aAdLe2gIR0B3EhlWfbsXdX2UKGgGR0BXhysOoYNzaAdLSGgIR0B3GgwaisXBdX2UKGgGR0BXrluJk5IZaAdLVmgIR0B3Jd7iQ1aXdX2UKGgGR0BX0cMiKR+0aAdLU2gIR0B3Lfttygf2dX2UKGgGR0BXm0mhM8HOaAdLSWgIR0B3OboRqXWwdX2UKGgGR0BXjHBxgiNbaAdLRWgIR0B3QbawljVhdX2UKGgGR0BXgLlzU7SzaAdLcWgIR0B3TcHIIWxhdX2UKGgGR0BXkqmGdqcmaAdLSmgIR0B3WYGhVU++dX2UKGgGR0BXdTEehf0FaAdLbmgIR0B3ZZ5LRKHxdX2UKGgGR0BXuWitaIN3aAdLSmgIR0B3bayUs4DLdX2UKGgGR0BXjea8Yht+aAdLU2gIR0B3eWjRD1GtdX2UKGgGR0BXG08NhE0BaAdLgmgIR0B3iUHZ9NN8dX2UKGgGR0BXVYZQ53kgaAdLZWgIR0B3lU6+36RAdX2UKGgGR0BXgMP8Q7LdaAdLUmgIR0B3oRWgezUrdX2UKGgGR0BXwORT0g8saAdLWWgIR0B3rBycTakAdX2UKGgGR0BX15iNKh+OaAdLW2gIR0B3tFHnU2DQdX2UKGgGR0BXvAc1fmcOaAdLSmgIR0B3vzeqJdjYdX2UKGgGR0BX3RqKxcFAaAdLXmgIR0B3yn0jC53DdX2UKGgGR0BXeETxoZhsaAdLTmgIR0B30nTEzfrKdX2UKGgGR0BXXqXfIjnnaAdLT2gIR0B33j1SOzY3dX2UKGgGR0BXn3Sa3I+4aAdLZGgIR0B36j2lEZzgdX2UKGgGR0BXpLa/RE4OaAdLSmgIR0B38k9cKPXDdX2UKGgGR0BXgD50r9VFaAdLZmgIR0B3/lScbzbwdX2UKGgGR0BXXWzjWCmNaAdLTmgIR0B4CiEDhcZ+dX2UKGgGR0BXl0B0ZFXraAdLTmgIR0B4EjriVB2PdX2UKGgGR0BXvgVO9FnaaAdLSWgIR0B4Gjr4WUKRdX2UKGgGR0BXmZN47ihnaAdLTWgIR0B4Jf/vOQhfdX2UKGgGR0BXrQtJ4B3iaAdLUGgIR0B4MUjs2NvPdWUu"
86
+ },
87
+ "ep_success_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
90
+ },
91
+ "_n_updates": 50016,
92
+ "buffer_size": 1,
93
+ "batch_size": 512,
94
+ "learning_starts": 0,
95
+ "tau": 0.01,
96
+ "gamma": 0.9999,
97
+ "gradient_steps": 32,
98
+ "optimize_memory_usage": false,
99
+ "replay_buffer_class": {
100
+ ":type:": "<class 'abc.ABCMeta'>",
101
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
+ "__module__": "stable_baselines3.common.buffers",
103
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f602796b430>",
105
+ "add": "<function ReplayBuffer.add at 0x7f602796b4c0>",
106
+ "sample": "<function ReplayBuffer.sample at 0x7f602796b550>",
107
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f602796b5e0>",
108
+ "__abstractmethods__": "frozenset()",
109
+ "_abc_impl": "<_abc._abc_data object at 0x7f6027962a40>"
110
+ },
111
+ "replay_buffer_kwargs": {},
112
+ "train_freq": {
113
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
114
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
115
+ },
116
+ "use_sde_at_warmup": false,
117
+ "target_entropy": -1.0,
118
+ "log_ent_coef": null,
119
+ "ent_coef": 0.1,
120
+ "target_update_interval": 1,
121
+ "ent_coef_optimizer": null,
122
+ "batch_norm_stats": [],
123
+ "batch_norm_stats_target": []
124
+ }
sac-MountainCarContinuous-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a5c4b61d70a5736cd6c5cf0650b6352826d0c9cbc7a50d7fd414935fce1df0
3
+ size 100168
sac-MountainCarContinuous-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39440af5158e3fb47ecc525e9d329ecbd7c856bf70fd565c749cc2c45263e188
3
+ size 747
sac-MountainCarContinuous-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ef23ffc628594a73c5ae1190e449270b8b24c92683124a70e68d2527d5bd595
3
+ size 11975