Quentin Gallouédec commited on
Commit
71c4855
·
1 Parent(s): ec563a8

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -195.00 +/- 108.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **SAC** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env Pendulum-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env Pendulum-v1 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('learning_rate', 0.001),
66
+ ('n_timesteps', 20000),
67
+ ('policy', 'MlpPolicy'),
68
+ ('normalize', False)])
69
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Pendulum-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3418694125
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Pendulum-v1__sac__3418694125__1672149197
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - learning_rate
3
+ - 0.001
4
+ - - n_timesteps
5
+ - 20000
6
+ - - policy
7
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:947d35f287bd327cdddedfca89f5a867a0d8b3938ab4cee5d4c9f0a30611095e
3
+ size 206572
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -195.0027038, "std_reward": 108.25291323216526, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:38:10.507817"}
sac-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a70f8ed3c2f3b2ab4e527c7b5e194a8ee07c25a70211f4c133c8dc8151b6235
3
+ size 3012468
sac-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
sac-Pendulum-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fad45e68945a17a27a8f51b39c736b091fb5413b447997442c84800b9a4c7fe
3
+ size 545181
sac-Pendulum-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b1a21044c3d43cb448ccff66fe25fe037e2e95f13c54349109ab356d70a1560
3
+ size 1086969
sac-Pendulum-v1/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7f3ffc752ca0>",
8
+ "_build": "<function SACPolicy._build at 0x7f3ffc752d30>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f3ffc752dc0>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f3ffc752e50>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7f3ffc752ee0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7f3ffc752f70>",
13
+ "forward": "<function SACPolicy.forward at 0x7f3ffc75b040>",
14
+ "_predict": "<function SACPolicy._predict at 0x7f3ffc75b0d0>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f3ffc75b160>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7f3ffcc3d340>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "use_sde": false
22
+ },
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 3
29
+ ],
30
+ "low": "[-1. -1. -8.]",
31
+ "high": "[1. 1. 8.]",
32
+ "bounded_below": "[ True True True]",
33
+ "bounded_above": "[ True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 1
42
+ ],
43
+ "low": "[-2.]",
44
+ "high": "[2.]",
45
+ "bounded_below": "[ True]",
46
+ "bounded_above": "[ True]",
47
+ "_np_random": "RandomState(MT19937)"
48
+ },
49
+ "n_envs": 1,
50
+ "num_timesteps": 20000,
51
+ "_total_timesteps": 20000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1672149200262685278,
56
+ "learning_rate": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
+ },
60
+ "tensorboard_log": "runs/Pendulum-v1__sac__3418694125__1672149197/Pendulum-v1",
61
+ "lr_schedule": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
64
+ },
65
+ "_last_obs": null,
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
69
+ },
70
+ "_last_original_obs": {
71
+ ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAF42eD+hpnq+L3ekvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
73
+ },
74
+ "_episode_num": 100,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0YldTK4mMCUhpRSlIwBbJRLyIwBdJRHP/8siB5HEuR1fZQoaAZoCWgPQwig3/dv/l6XwJSGlFKUaBVLyGgWR0AMvoicG1QZdX2UKGgGaAloD0MI+DO8WfPIl8CUhpRSlGgVS8hoFkdAFPDaGpMpPXV9lChoBmgJaA9DCFmnyves9ZPAlIaUUpRoFUvIaBZHQBt+tW+49X91fZQoaAZoCWgPQwhzucFQhyScwJSGlFKUaBVLyGgWR0AhClByCFsYdX2UKGgGaAloD0MIAWxAhAgVmsCUhpRSlGgVS8hoFkdAJE31jAi3X3V9lChoBmgJaA9DCKwb747cJJTAlIaUUpRoFUvIaBZHQCeYOhCdBjZ1fZQoaAZoCWgPQwhT6pJxbPqVwJSGlFKUaBVLyGgWR0Aq3cer+5vtdX2UKGgGaAloD0MIcjRHVg5BksCUhpRSlGgVS8hoFkdALiyJKraM73V9lChoBmgJaA9DCMIxy55kn4/AlIaUUpRoFUvIaBZHQDC69vjwQUZ1fZQoaAZoCWgPQwgPtAJDNlyIwJSGlFKUaBVLyGgWR0AyX/47A+INdX2UKGgGaAloD0MI8gwa+mecc8CUhpRSlGgVS8hoFkdANAKhUR3/xXV9lChoBmgJaA9DCGDJVSz+g4HAlIaUUpRoFUvIaBZHQDWl4+r2g391fZQoaAZoCWgPQwhrSNxjad1+wJSGlFKUaBVLyGgWR0A3StZ3cHnmdX2UKGgGaAloD0MIinQ/pyBocMCUhpRSlGgVS8hoFkdAOO5Gax5cDHV9lChoBmgJaA9DCCdmvRjKiQbAlIaUUpRoFUvIaBZHQDqUXfqHGjt1fZQoaAZoCWgPQwi5wyYy03aMwJSGlFKUaBVLyGgWR0A8OwHZ9NN8dX2UKGgGaAloD0MIFjQtsTIMb8CUhpRSlGgVS8hoFkdAPdzPBzmwJXV9lChoBmgJaA9DCGZMwRrn5m3AlIaUUpRoFUvIaBZHQD+DR9gF5fN1fZQoaAZoCWgPQwgcsoF0sT1fwJSGlFKUaBVLyGgWR0BAk8MEzO5bdX2UKGgGaAloD0MIArhZvFhlbsCUhpRSlGgVS8hoFkdAQWOmaYu01XV9lChoBmgJaA9DCPw07s3vQW3AlIaUUpRoFUvIaBZHQEIrpB5X2dx1fZQoaAZoCWgPQwg5J/bQPlbzv5SGlFKUaBVLyGgWR0BC/bKRuCPIdX2UKGgGaAloD0MIkdJsHrcvk8CUhpRSlGgVS8hoFkdAQ9ArJ8v25HV9lChoBmgJaA9DCLVOXI5X713AlIaUUpRoFUvIaBZHQESiqVhTfix1fZQoaAZoCWgPQwgD7Q4pBqBewJSGlFKUaBVLyGgWR0BFdOLBKtgbdX2UKGgGaAloD0MIwlCHFW45BcCUhpRSlGgVS8hoFkdARkeoUBXCCXV9lChoBmgJaA9DCFkyx/Ju7XTAlIaUUpRoFUvIaBZHQEcZkWAPNFB1fZQoaAZoCWgPQwg6kst/SChtwJSGlFKUaBVLyGgWR0BH6bjcVQANdX2UKGgGaAloD0MIvHmqQ26UXsCUhpRSlGgVS8hoFkdASLbo+wC8vnV9lChoBmgJaA9DCP+xEB0CDGDAlIaUUpRoFUvIaBZHQEmCioKlYU51fZQoaAZoCWgPQwg41zBD4+lewJSGlFKUaBVLyGgWR0BKThl18stkdX2UKGgGaAloD0MIzt2ul6YIAsCUhpRSlGgVS8hoFkdASxtuLrHEM3V9lChoBmgJaA9DCPd0dcdiZGDAlIaUUpRoFUvIaBZHQEvoSV4X40x1fZQoaAZoCWgPQwj4TzdQ4IxtwJSGlFKUaBVLyGgWR0BMtFxXGOuJdX2UKGgGaAloD0MIkgcii/RrdsCUhpRSlGgVS8hoFkdATYEXzlLeynV9lChoBmgJaA9DCMvapnhcY23AlIaUUpRoFUvIaBZHQE5O7fYSQHR1fZQoaAZoCWgPQwjRWPs7275ewJSGlFKUaBVLyGgWR0BPG4Xwb2lEdX2UKGgGaAloD0MI/KpcqPyr/7+UhpRSlGgVS8hoFkdAT+ehXbM5fnV9lChoBmgJaA9DCO27IvjfCve/lIaUUpRoFUvIaBZHQFBZ6i0v4/N1fZQoaAZoCWgPQwjSHcTOFEJdwJSGlFKUaBVLyGgWR0BQwD/VAiV0dX2UKGgGaAloD0MIF2NgHccfXcCUhpRSlGgVS8hoFkdAUSZTQ3PzF3V9lChoBmgJaA9DCATJO4cyAV7AlIaUUpRoFUvIaBZHQFGMicXm/351fZQoaAZoCWgPQwiRDaSLTWVewJSGlFKUaBVLyGgWR0BR8m8Empl0dX2UKGgGaAloD0MISnmthO7LXcCUhpRSlGgVS8hoFkdAUliG+K0laHV9lChoBmgJaA9DCOBlho2yFV/AlIaUUpRoFUvIaBZHQFK+L7Gecx11fZQoaAZoCWgPQwgn28AdKABtwJSGlFKUaBVLyGgWR0BTI/Ls8gZCdX2UKGgGaAloD0MI7UrLSL2RbMCUhpRSlGgVS8hoFkdAU4mAI6bONnV9lChoBmgJaA9DCGstzEI75/u/lIaUUpRoFUvIaBZHQFPvY9xIatN1fZQoaAZoCWgPQwiIEcKjjcdcwJSGlFKUaBVLyGgWR0BUVTm8ujASdX2UKGgGaAloD0MIrTWU2osuX8CUhpRSlGgVS8hoFkdAVLVjpcHGCXV9lChoBmgJaA9DCD8buW5KuV3AlIaUUpRoFUvIaBZHQFUV8J2MbWF1fZQoaAZoCWgPQwiiluZWCFtewJSGlFKUaBVLyGgWR0BVdox+KCQLdX2UKGgGaAloD0MIAYV6+giSX8CUhpRSlGgVS8hoFkdAVdxomG/N7nV9lChoBmgJaA9DCMTOFDqve17AlIaUUpRoFUvIaBZHQFZB6w+t8u11fZQoaAZoCWgPQwhy+nq+5rhtwJSGlFKUaBVLyGgWR0BWp19v0h/zdX2UKGgGaAloD0MI5C7CFCUPdsCUhpRSlGgVS8hoFkdAVw09dNWU8nV9lChoBmgJaA9DCFggelIm1QLAlIaUUpRoFUvIaBZHQFdzKZUkv9N1fZQoaAZoCWgPQwixbrw7MuFewJSGlFKUaBVLyGgWR0BX2Kur6tT2dX2UKGgGaAloD0MI1T2yuWqe67+UhpRSlGgVS8hoFkdAWD4qH446wXV9lChoBmgJaA9DCP7RN2ka1Pu/lIaUUpRoFUvIaBZHQFikANXo1UF1fZQoaAZoCWgPQwjoa5bLRvxewJSGlFKUaBVLyGgWR0BZChvBJqZddX2UKGgGaAloD0MIZvol4i36b8CUhpRSlGgVS8hoFkdAWXCRmseXA3V9lChoBmgJaA9DCCo7/aAu8l3AlIaUUpRoFUvIaBZHQFnXDs+mm+F1fZQoaAZoCWgPQwgCnUmbKq5swJSGlFKUaBVLyGgWR0BaPbyDqW1MdX2UKGgGaAloD0MIc/IiE/BEXsCUhpRSlGgVS8hoFkdAWqPtXxOLznV9lChoBmgJaA9DCIDSUKOQ5Pm/lIaUUpRoFUvIaBZHQFsKJyQxN7B1fZQoaAZoCWgPQwjRWPs72+P1v5SGlFKUaBVLyGgWR0BbcIkRjBl+dX2UKGgGaAloD0MI68VQTnT1dMCUhpRSlGgVS8hoFkdAW9dZuAI6bXV9lChoBmgJaA9DCN6tLNHZtnTAlIaUUpRoFUvIaBZHQFw9bbDdgv11fZQoaAZoCWgPQwiZKELqthR2wJSGlFKUaBVLyGgWR0BcozQVsUItdX2UKGgGaAloD0MIS5Ln+j4xX8CUhpRSlGgVS8hoFkdAXQjRF7Uoa3V9lChoBmgJaA9DCLcm3ZbIg1/AlIaUUpRoFUvIaBZHQF1uwxFiKBN1fZQoaAZoCWgPQwjxoNl179VuwJSGlFKUaBVLyGgWR0Bd1HVCojwAdX2UKGgGaAloD0MIs7W+SGjL9r+UhpRSlGgVS8hoFkdAXjpcTrVvuXV9lChoBmgJaA9DCAZjRKLQsv2/lIaUUpRoFUvIaBZHQF6gEOy3TeB1fZQoaAZoCWgPQwhrmQzH89n7v5SGlFKUaBVLyGgWR0BfBgJTl1bJdX2UKGgGaAloD0MIN4sXC0MkAMCUhpRSlGgVS8hoFkdAX2w1fmcOLHV9lChoBmgJaA9DCGPuWkI+4V7AlIaUUpRoFUvIaBZHQF/SElVtGd91fZQoaAZoCWgPQwhz9WOT/DdewJSGlFKUaBVLyGgWR0BgG+5z5oGqdX2UKGgGaAloD0MI5/7qcV9fbcCUhpRSlGgVS8hoFkdAYE6ItUXHinV9lChoBmgJaA9DCN2U8loJDRTAlIaUUpRoFUvIaBZHQGB/JaJQ+EB1fZQoaAZoCWgPQwghzVg0nTdgwJSGlFKUaBVLyGgWR0BgsfbCaZx8dX2UKGgGaAloD0MI73N8tDhOYMCUhpRSlGgVS8hoFkdAYOTPLxI8Q3V9lChoBmgJaA9DCCGSIcfW6yPAlIaUUpRoFUvIaBZHQGEX1NYbKih1fZQoaAZoCWgPQwgwgsZMoqdgwJSGlFKUaBVLyGgWR0BhSwVymygPdX2UKGgGaAloD0MIEqW9wZc6YMCUhpRSlGgVS8hoFkdAYX5DQZ4wAXV9lChoBmgJaA9DCGE2AYbl+F7AlIaUUpRoFUvIaBZHQGGxYh+vyLB1fZQoaAZoCWgPQwhjKZKvBK1gwJSGlFKUaBVLyGgWR0Bh5ICW/rSmdX2UKGgGaAloD0MIHCjwTj45YMCUhpRSlGgVS8hoFkdAYhfCJGe+VXV9lChoBmgJaA9DCBXFq6xtk2DAlIaUUpRoFUvIaBZHQGJK6xgRbr11fZQoaAZoCWgPQwg7Gof63dVgwJSGlFKUaBVLyGgWR0Biffd43WFwdX2UKGgGaAloD0MIZcdGIN5lcMCUhpRSlGgVS8hoFkdAYrG5aNdZ73V9lChoBmgJaA9DCNMVbCOeLDDAlIaUUpRoFUvIaBZHQGLnDslb/wR1fZQoaAZoCWgPQwi+S6lLxnkrwJSGlFKUaBVLyGgWR0BjHH07KaG6dX2UKGgGaAloD0MIeSCySJO8YMCUhpRSlGgVS8hoFkdAY1G8tf5ULnV9lChoBmgJaA9DCCe8BKe+CWHAlIaUUpRoFUvIaBZHQGOG9P1tfol1fZQoaAZoCWgPQwjmlICYhCthwJSGlFKUaBVLyGgWR0BjvCfUWl/IdX2UKGgGaAloD0MIGVkyx3IIYMCUhpRSlGgVS8hoFkdAY/GhOgxrSHV9lChoBmgJaA9DCCqOA6+WqWDAlIaUUpRoFUvIaBZHQGQnG4I8hcJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 19900,
87
+ "buffer_size": 1,
88
+ "batch_size": 256,
89
+ "learning_starts": 100,
90
+ "tau": 0.005,
91
+ "gamma": 0.99,
92
+ "gradient_steps": 1,
93
+ "optimize_memory_usage": false,
94
+ "replay_buffer_class": {
95
+ ":type:": "<class 'abc.ABCMeta'>",
96
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
97
+ "__module__": "stable_baselines3.common.buffers",
98
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
99
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f3ffc7ab430>",
100
+ "add": "<function ReplayBuffer.add at 0x7f3ffc7ab4c0>",
101
+ "sample": "<function ReplayBuffer.sample at 0x7f3ffc7ab550>",
102
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f3ffc7ab5e0>",
103
+ "__abstractmethods__": "frozenset()",
104
+ "_abc_impl": "<_abc._abc_data object at 0x7f3ffc7a5500>"
105
+ },
106
+ "replay_buffer_kwargs": {},
107
+ "train_freq": {
108
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
109
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
110
+ },
111
+ "use_sde_at_warmup": false,
112
+ "target_entropy": -1.0,
113
+ "ent_coef": "auto",
114
+ "target_update_interval": 1,
115
+ "batch_norm_stats": [],
116
+ "batch_norm_stats_target": []
117
+ }
sac-Pendulum-v1/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c27a0b667de37afd8f86f15c4671c9eb1cd506371a79e486a4549deaabab0b20
3
+ size 1507
sac-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a558f71192b7bf6f877eaca5b6b1f58c286b8c444ae9e3fcbfe3d0498f2af25
3
+ size 1357573
sac-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:429dbcefde8df4ef8e3c126e6c132f8e870a0b815a455d30aeed2e3d214de345
3
+ size 747
sac-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7b70904d35775c85b89273a656bf0cdb28faddc767c8d239a5e3db9c5cd99b4
3
+ size 2878