Quentin Gallouédec commited on
Commit
2f512d9
·
1 Parent(s): c1008ce

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCarContinuous-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCarContinuous-v0
16
+ type: MountainCarContinuous-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 93.36 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TD3** Agent playing **MountainCarContinuous-v0**
25
+ This is a trained model of a **TD3** agent playing **MountainCarContinuous-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo td3 --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo td3 --env MountainCarContinuous-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo td3 --env MountainCarContinuous-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo td3 --env MountainCarContinuous-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo td3 --env MountainCarContinuous-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo td3 --env MountainCarContinuous-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('n_timesteps', 300000),
66
+ ('noise_std', 0.5),
67
+ ('noise_type', 'ornstein-uhlenbeck'),
68
+ ('policy', 'MlpPolicy'),
69
+ ('normalize', False)])
70
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - MountainCarContinuous-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 281228768
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/MountainCarContinuous-v0__td3__281228768__1672250438
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - n_timesteps
3
+ - 300000
4
+ - - noise_std
5
+ - 0.5
6
+ - - noise_type
7
+ - ornstein-uhlenbeck
8
+ - - policy
9
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:210939aac27bd592b9a0b0abdd705913960d4e092d2a0701ac2aa7919b1b3078
3
+ size 270972
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 93.3588819, "std_reward": 0.11122812045382163, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T16:24:56.964275"}
td3-MountainCarContinuous-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5edc0f82a250580a49596a5353721c2fa7d14e808daf6da336b770132dcb30fb
3
+ size 5904101
td3-MountainCarContinuous-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
td3-MountainCarContinuous-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b9f16bd658307f8165643cdc335ffd27227a6fbf5e83e9588e457e597738f5d
3
+ size 979247
td3-MountainCarContinuous-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ee27acbc1b546ee9eb932dee71630c963f636b652dfa9753e6f9e0c60ca4704
3
+ size 1964601
td3-MountainCarContinuous-v0/data ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7fc0d776e940>",
8
+ "_build": "<function TD3Policy._build at 0x7fc0d776e9d0>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fc0d776ea60>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7fc0d776eaf0>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7fc0d776eb80>",
12
+ "forward": "<function TD3Policy.forward at 0x7fc0d776ec10>",
13
+ "_predict": "<function TD3Policy._predict at 0x7fc0d776eca0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fc0d776ed30>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7fc0d7b57880>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "observation_space": {
21
+ ":type:": "<class 'gym.spaces.box.Box'>",
22
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
23
+ "dtype": "float32",
24
+ "_shape": [
25
+ 2
26
+ ],
27
+ "low": "[-1.2 -0.07]",
28
+ "high": "[0.6 0.07]",
29
+ "bounded_below": "[ True True]",
30
+ "bounded_above": "[ True True]",
31
+ "_np_random": null
32
+ },
33
+ "action_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 1
39
+ ],
40
+ "low": "[-1.]",
41
+ "high": "[1.]",
42
+ "bounded_below": "[ True]",
43
+ "bounded_above": "[ True]",
44
+ "_np_random": "RandomState(MT19937)"
45
+ },
46
+ "n_envs": 1,
47
+ "num_timesteps": 300064,
48
+ "_total_timesteps": 300000,
49
+ "_num_timesteps_at_start": 0,
50
+ "seed": 0,
51
+ "action_noise": {
52
+ ":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
53
+ ":serialized:": "gAWVVQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlIwGX3NpZ21hlGgJKJYIAAAAAAAAAAAAAAAAAOA/lGgQSwGFlGgUdJRSlIwDX2R0lEc/hHrhR64Ue4wNaW5pdGlhbF9ub2lzZZROjApub2lzZV9wcmV2lGgJKJYIAAAAAAAAAAAAAAAAAAAAlGgQSwGFlGgUdJRSlHViLg==",
54
+ "_theta": 0.15,
55
+ "_mu": "[0.]",
56
+ "_sigma": "[0.5]",
57
+ "_dt": 0.01,
58
+ "initial_noise": null,
59
+ "noise_prev": "[0.]"
60
+ },
61
+ "start_time": 1672250441174531594,
62
+ "learning_rate": 0.001,
63
+ "tensorboard_log": "runs/MountainCarContinuous-v0__td3__281228768__1672250438/MountainCarContinuous-v0",
64
+ "lr_schedule": {
65
+ ":type:": "<class 'function'>",
66
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
67
+ },
68
+ "_last_obs": null,
69
+ "_last_episode_starts": {
70
+ ":type:": "<class 'numpy.ndarray'>",
71
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
72
+ },
73
+ "_last_original_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAuz5D7AKtA8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
76
+ },
77
+ "_episode_num": 2975,
78
+ "use_sde": false,
79
+ "sde_sample_freq": -1,
80
+ "_current_progress_remaining": -0.00021333333333339866,
81
+ "ep_info_buffer": {
82
+ ":type:": "<class 'collections.deque'>",
83
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFdmAfuCwr2MAWyUS0SMAXSUR0CSVZPTodMkdX2UKGgGR0BX3CzLOiWWaAdLT2gIR0CSVrVzp5eJdX2UKGgGR0BXlod+5OJtaAdLRmgIR0CSV/qXnhbXdX2UKGgGR0BXvWnbZezEaAdLSmgIR0CSWSCNCJGfdX2UKGgGR0BXbl6Vt4zKaAdLQ2gIR0CSWlp48loldX2UKGgGR0BXRAWJrLyMaAdLjGgIR0CSW5PbO/tZdX2UKGgGR0BXjxhc7hegaAdLRGgIR0CSXb2TgVGkdX2UKGgGR0BXhAGnn+yaaAdLRGgIR0CSXteUILPVdX2UKGgGR0BXZLwazeGgaAdLQmgIR0CSX/HX2/SIdX2UKGgGR0BXoDVpblijaAdLSWgIR0CSYQhAGB4EdX2UKGgGR0BXf7B42S+yaAdLSGgIR0CSYjZFXq7idX2UKGgGR0BXeujVQQ+VaAdLRmgIR0CSY2AZsKsudX2UKGgGR0BXYN+w1R+CaAdLQmgIR0CSZIRG+bmVdX2UKGgGR0BXn9dE9dNWaAdLRWgIR0CSZZkBjnV5dX2UKGgGR0BXVFxffGdaaAdLRGgIR0CSZrmPYFq0dX2UKGgGR0BXfVkQPI4maAdLQmgIR0CSZ9NS619fdX2UKGgGR0BXXVj/dZaFaAdLRmgIR0CSaOcJ+lTFdX2UKGgGR0BXQ5BgNPP+aAdLj2gIR0CSaifWMCLddX2UKGgGR0BXf/vKEFnqaAdLQ2gIR0CSbFnDR+jNdX2UKGgGR0BXh8u3+dbxaAdLRmgIR0CSbXNedCmedX2UKGgGR0BXbvgBLf1paAdLRGgIR0CSbpXsPatcdX2UKGgGR0BVpVMAWBSUaAdL82gIR0CSb/cVQAMldX2UKGgGR0BXZNjTa0x/aAdLYGgIR0CSc65imVJMdX2UKGgGR0BXg8oYvWYnaAdLQ2gIR0CSdTHVwxWUdX2UKGgGR0BXmpcs189faAdLTGgIR0CSdk3+dbxFdX2UKGgGR0BXppqIrOJMaAdLVmgIR0CSd4+PzWf9dX2UKGgGR0BXdcjFAE+xaAdLR2gIR0CSePGO+7DmdX2UKGgGR0BXcYRRMvh7aAdLRGgIR0CSehcLBsQ/dX2UKGgGR0BXVs/6fra/aAdLRGgIR0CSezI/JNj9dX2UKGgGR0BXc3WrfcesaAdLRWgIR0CSfE95yEL6dX2UKGgGR0BXeHck+otMaAdLQmgIR0CSfW8VpKzzdX2UKGgGR0BXdIgzP8htaAdLQ2gIR0CSfoGpuMuOdX2UKGgGR0BXjLsfJV81aAdLQ2gIR0CSf5aN+9amdX2UKGgGR0BXdcbFS88LaAdLQmgIR0CSgK9wFTvRdX2UKGgGR0BXdLBoEjgRaAdLRGgIR0CSgcKTjebedX2UKGgGR0BXEjKPn0TUaAdLjGgIR0CSgvo60Y0mdX2UKGgGR0BXgk34sVcmaAdLQ2gIR0CShSI7/4qPdX2UKGgGR0BXZey/sVtXaAdLQmgIR0CShjXHim2tdX2UKGgGR0BXbwOBlMAWaAdLQmgIR0CSh0WkJrtWdX2UKGgGR0BXfBKcurZKaAdLQ2gIR0CSiFaFVT73dX2UKGgGR0BWyw482aUiaAdLhWgIR0CSiYUaQ3gldX2UKGgGR0BXDnC4z7/GaAdLiWgIR0CSi6shxHXmdX2UKGgGR0BXeD8LronsaAdLRGgIR0CSjcrj5sTGdX2UKGgGR0BXaWRA8jiXaAdLQ2gIR0CSjuQeFL39dX2UKGgGR0BXmjImw7koaAdLRmgIR0CSj/kHUtqYdX2UKGgGR0BXmFqveP7vaAdLS2gIR0CSkR163RXwdX2UKGgGR0BXmoS13MY/aAdLRWgIR0CSklGYa5wwdX2UKGgGR0BWQPYjB2wFaAdL9WgIR0CSk69LYf4idX2UKGgGR0BXavoRqXWwaAdLQmgIR0CSl16yjYZmdX2UKGgGR0BXY9I5HVgAaAdLRWgIR0CSmHGBnSOSdX2UKGgGR0BXYsAiml67aAdLQmgIR0CSmYr8BMi9dX2UKGgGR0BXXmeQMhHLaAdLRWgIR0CSmpy2QXANdX2UKGgGR0BXdpwGW2PUaAdLRmgIR0CSm7tEG7jDdX2UKGgGR0BXwiTlkpZwaAdLTGgIR0CSnOHBDXvqdX2UKGgGR0BXdXZK3/gjaAdLQ2gIR0CSnhoLG7z1dX2UKGgGR0BXa5ZbILgGaAdLRGgIR0CSnzCN0eU7dX2UKGgGR0BXiR9b5dnkaAdLR2gIR0CSoFB3Roh7dX2UKGgGR0BWMDQeFL39aAdL0WgIR0CSobC5EtuldX2UKGgGR0BXoUo8ZDRdaAdLTGgIR0CSpOCiAUcodX2UKGgGR0BXc+d07r9maAdLRmgIR0CSphnk1dgOdX2UKGgGR0BXzGseXAuaaAdLTWgIR0CSpz//vOQhdX2UKGgGR0BXkD3Zf2K3aAdLRGgIR0CSqIAsTWXkdX2UKGgGR0BXjCCnP3SKaAdLSGgIR0CSqZwnYxtYdX2UKGgGR0BXHFMVUModaAdLiGgIR0CSquD2alUIdX2UKGgGR0BXbrX6InBtaAdLQmgIR0CSrPvnKW9ldX2UKGgGR0BXapkXk5p8aAdLQmgIR0CSrg+Vkc0cdX2UKGgGR0BXZngtOEdvaAdLR2gIR0CSryQXyiEhdX2UKGgGR0BXlJVbRne0aAdLRmgIR0CSsEm4iHIqdX2UKGgGR0BXeGiHqNZNaAdLQmgIR0CSsWu3trsTdX2UKGgGR0BXbUv4/NaAaAdLQWgIR0CSsn+BpYcOdX2UKGgGR0BW2+oP07KaaAdLgWgIR0CSs6imEXchdX2UKGgGR0BXc85sCT2WaAdLQmgIR0CStalZX+2mdX2UKGgGR0BXbJVKf4ATaAdLQmgIR0CStrvWpZOjdX2UKGgGR0BXhoKtxMnJaAdLTWgIR0CSt9RQ79ycdX2UKGgGR0BXbPBN21UmaAdLQWgIR0CSuRDb8FY/dX2UKGgGR0BXd0FOfukUaAdLRWgIR0CSuh7Rv3rVdX2UKGgGR0BXxUzsQd0aaAdLTWgIR0CSu0HcDbJwdX2UKGgGR0BXutu5z5oHaAdLS2gIR0CSvIJLuhK2dX2UKGgGR0BXaDOcDr7gaAdLR2gIR0CSvblS0jTsdX2UKGgGR0BMAw4jrzGxaAdNaANoCEdAksAYZydWhnV9lChoBkdAV21lkH2RJWgHS0ZoCEdAks0CCrcTJ3V9lChoBkdAVxYH9m6GxmgHS5FoCEdAks5Co86mwnV9lChoBkdAV2z+jua4MGgHS0JoCEdAktB+6Zpi7XV9lChoBkdAV2qOhkAggWgHS0NoCEdAktGRMWXTmXV9lChoBkdAV3f4REnb7GgHS0loCEdAktKpN0vGqHV9lChoBkdAV5CltTDO1WgHS0RoCEdAktPcwDeTFHV9lChoBkdAV3lrXUYsNGgHS0NoCEdAktT2YF7laXV9lChoBkdAV6YZwXIlt2gHS1JoCEdAktYSIpH7QHV9lChoBkdAVrRK02LpA2gHS4FoCEdAktd5DArQPnV9lChoBkdAV5tIlMRHw2gHS0VoCEdAktl6kdmxuHV9lChoBkdAV0L6ZYxL02gHS5RoCEdAktq21c+qznV9lChoBkdAV7FNucc2i2gHS1ZoCEdAkt0GRJVbRnV9lChoBkdAV5tfNRm9QGgHS0VoCEdAkt5ky1uzhXV9lChoBkdAV5cDoyKvV2gHS0NoCEdAkt+FoYekpXV9lChoBkdAV3vQgLZzxWgHS0JoCEdAkuCanvUjLXV9lChoBkdAV3pDWsijcmgHS0NoCEdAkuGtZ3cHnnV9lChoBkdAVx0mx+rlvWgHS4ZoCEdAkuLgoTfzjHV9lChoBkdAV5d88cMmW2gHS0RoCEdAkuT2HxjJ+3V9lChoBkdAV5T84xUNrmgHS0hoCEdAkuYS+Yc/+3V9lChoBkdAV7sgEEC/5GgHS05oCEdAkue0Mw1zhnVlLg=="
84
+ },
85
+ "ep_success_buffer": {
86
+ ":type:": "<class 'collections.deque'>",
87
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
88
+ },
89
+ "_n_updates": 300064,
90
+ "buffer_size": 1,
91
+ "batch_size": 100,
92
+ "learning_starts": 100,
93
+ "tau": 0.005,
94
+ "gamma": 0.99,
95
+ "gradient_steps": -1,
96
+ "optimize_memory_usage": false,
97
+ "replay_buffer_class": {
98
+ ":type:": "<class 'abc.ABCMeta'>",
99
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
100
+ "__module__": "stable_baselines3.common.buffers",
101
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
102
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fc0d776a430>",
103
+ "add": "<function ReplayBuffer.add at 0x7fc0d776a4c0>",
104
+ "sample": "<function ReplayBuffer.sample at 0x7fc0d776a550>",
105
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fc0d776a5e0>",
106
+ "__abstractmethods__": "frozenset()",
107
+ "_abc_impl": "<_abc._abc_data object at 0x7fc0d7d455c0>"
108
+ },
109
+ "replay_buffer_kwargs": {},
110
+ "train_freq": {
111
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
112
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
113
+ },
114
+ "use_sde_at_warmup": false,
115
+ "policy_delay": 2,
116
+ "target_noise_clip": 0.5,
117
+ "target_policy_noise": 0.2,
118
+ "actor_batch_norm_stats": [],
119
+ "critic_batch_norm_stats": [],
120
+ "actor_batch_norm_stats_target": [],
121
+ "critic_batch_norm_stats_target": []
122
+ }
td3-MountainCarContinuous-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fee692df5a21c5073cf67f825ebbcb2417d3aadf8dde27dbab274842f511596
3
+ size 2941689
td3-MountainCarContinuous-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-MountainCarContinuous-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7553ca3c5b45638ed3228dec2cfb94168dbfd92ea44ef20c4bc5790bdf79214
3
+ size 76954