Quentin Gallouédec commited on
Commit
d76601e
·
1 Parent(s): 16670a9

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -229.76 +/- 149.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TRPO** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **TRPO** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo trpo --env Pendulum-v1 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo trpo --env Pendulum-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo trpo --env Pendulum-v1 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo trpo --env Pendulum-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo trpo --env Pendulum-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo trpo --env Pendulum-v1 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('gamma', 0.9),
66
+ ('n_critic_updates', 15),
67
+ ('n_envs', 2),
68
+ ('n_steps', 1024),
69
+ ('n_timesteps', 100000.0),
70
+ ('policy', 'MlpPolicy'),
71
+ ('sde_sample_freq', 4),
72
+ ('use_sde', True),
73
+ ('normalize', False)])
74
+ ```
args.yml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - Pendulum-v1
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 20
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - max_total_trials
23
+ - null
24
+ - - n_eval_envs
25
+ - 5
26
+ - - n_evaluations
27
+ - null
28
+ - - n_jobs
29
+ - 1
30
+ - - n_startup_trials
31
+ - 10
32
+ - - n_timesteps
33
+ - -1
34
+ - - n_trials
35
+ - 500
36
+ - - no_optim_plots
37
+ - false
38
+ - - num_threads
39
+ - -1
40
+ - - optimization_log_path
41
+ - null
42
+ - - optimize_hyperparameters
43
+ - false
44
+ - - progress
45
+ - false
46
+ - - pruner
47
+ - median
48
+ - - sampler
49
+ - tpe
50
+ - - save_freq
51
+ - -1
52
+ - - save_replay_buffer
53
+ - false
54
+ - - seed
55
+ - 3955154760
56
+ - - storage
57
+ - null
58
+ - - study_name
59
+ - null
60
+ - - tensorboard_log
61
+ - runs/Pendulum-v1__trpo__3955154760__1670945694
62
+ - - track
63
+ - true
64
+ - - trained_agent
65
+ - ''
66
+ - - truncate_last_trajectory
67
+ - true
68
+ - - uuid
69
+ - false
70
+ - - vec_env
71
+ - dummy
72
+ - - verbose
73
+ - 1
74
+ - - wandb_entity
75
+ - openrlbenchmark
76
+ - - wandb_project_name
77
+ - sb3
78
+ - - yaml_file
79
+ - null
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - gamma
3
+ - 0.9
4
+ - - n_critic_updates
5
+ - 15
6
+ - - n_envs
7
+ - 2
8
+ - - n_steps
9
+ - 1024
10
+ - - n_timesteps
11
+ - 100000.0
12
+ - - policy
13
+ - MlpPolicy
14
+ - - sde_sample_freq
15
+ - 4
16
+ - - use_sde
17
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:998440f10ff625f3d4f689f60e6bd8439d036cd5fec5152d721bf61dbb443dcb
3
+ size 123124
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -229.7596549, "std_reward": 149.27277877746937, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T17:14:56.348925"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b89ca4cdef90eebd4d70ada537636fbea6f87019ed10b49ed78afe8855b3abb
3
+ size 15972
trpo-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fb0dad2425c6c45efe9100acae2aac2f9b2b459c28d48af0b05e135fb2f528c
3
+ size 99459
trpo-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
trpo-Pendulum-v1/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f18d73d0d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f18d73d0dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f18d73d0e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f18d73d0ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f18d73d0f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f18d73d3040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f18d73d30d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f18d73d3160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f18d73d31f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f18d73d3280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18d73d3310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f18d73d33a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f18d73cea40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 3
30
+ ],
31
+ "low": "[-1. -1. -8.]",
32
+ "high": "[1. 1. 8.]",
33
+ "bounded_below": "[ True True True]",
34
+ "bounded_above": "[ True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 1
43
+ ],
44
+ "low": "[-2.]",
45
+ "high": "[2.]",
46
+ "bounded_below": "[ True]",
47
+ "bounded_above": "[ True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 100352,
52
+ "_total_timesteps": 100000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1670945697178679686,
57
+ "learning_rate": 0.001,
58
+ "tensorboard_log": "runs/Pendulum-v1__trpo__3955154760__1670945694/Pendulum-v1",
59
+ "lr_schedule": {
60
+ ":type:": "<class 'function'>",
61
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
62
+ },
63
+ "_last_obs": null,
64
+ "_last_episode_starts": {
65
+ ":type:": "<class 'numpy.ndarray'>",
66
+ ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
67
+ },
68
+ "_last_original_obs": null,
69
+ "_episode_num": 0,
70
+ "use_sde": true,
71
+ "sde_sample_freq": 4,
72
+ "_current_progress_remaining": -0.0035199999999999676,
73
+ "ep_info_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZK2h1N6OYMCUhpRSlIwBbJRLyIwBdJRHQEodIOH31z11fZQoaAZoCWgPQwg2qz5Xm4h3wJSGlFKUaBVLyGgWR0BKHQ5NoJzDdX2UKGgGaAloD0MIcv27PnOGFsCUhpRSlGgVS8hoFkdASjH4EfT1CnV9lChoBmgJaA9DCM0Ew7nG9nzAlIaUUpRoFUvIaBZHQEox5Y5ksjF1fZQoaAZoCWgPQwjwi0tV2kdwwJSGlFKUaBVLyGgWR0BKSCYb83uNdX2UKGgGaAloD0MIS5F8JRB+bsCUhpRSlGgVS8hoFkdASkgTK1XvIHV9lChoBmgJaA9DCM7fhEKEMGDAlIaUUpRoFUvIaBZHQEpfutOmBOJ1fZQoaAZoCWgPQwgI51PHKqNhwJSGlFKUaBVLyGgWR0BKX6fJ3gUDdX2UKGgGaAloD0MImYHK+PeabsCUhpRSlGgVS8hoFkdASqgsVclgMXV9lChoBmgJaA9DCIPfhhivMWHAlIaUUpRoFUvIaBZHQEqoGkep4r11fZQoaAZoCWgPQwhbCHJQQplwwJSGlFKUaBVLyGgWR0BKv5LZi/fwdX2UKGgGaAloD0MIfPFFezycYcCUhpRSlGgVS8hoFkdASr9/4Irvs3V9lChoBmgJaA9DCN0Gtd/a1XDAlIaUUpRoFUvIaBZHQErXL1VYISl1fZQoaAZoCWgPQwifVzz1iAZwwJSGlFKUaBVLyGgWR0BK1xxT850bdX2UKGgGaAloD0MIxNFVuvsQeMCUhpRSlGgVS8hoFkdASu5/mT1TSHV9lChoBmgJaA9DCIMvTKaKFmDAlIaUUpRoFUvIaBZHQErubNr0rbx1fZQoaAZoCWgPQwg5fT1fsxJvwJSGlFKUaBVLyGgWR0BLBgFxGUfQdX2UKGgGaAloD0MIaQBvgcSRecCUhpRSlGgVS8hoFkdASwXvUjLSu3V9lChoBmgJaA9DCMI1d/Q/V3XAlIaUUpRoFUvIaBZHQEtM19fCyhV1fZQoaAZoCWgPQwhVoBaDB9xgwJSGlFKUaBVLyGgWR0BLTMXzlLezdX2UKGgGaAloD0MI6DHKM29+cMCUhpRSlGgVS8hoFkdAS2Q40dilSHV9lChoBmgJaA9DCOWc2EN763nAlIaUUpRoFUvIaBZHQEtkJeE7GNt1fZQoaAZoCWgPQwiFmbZ/5TlgwJSGlFKUaBVLyGgWR0BLfL61stTUdX2UKGgGaAloD0MIINRFCmUeYMCUhpRSlGgVS8hoFkdAS3yrvLHMlnV9lChoBmgJaA9DCKc7TzxnCl7AlIaUUpRoFUvIaBZHQEuWYR/ViF11fZQoaAZoCWgPQwiHbYsym3RhwJSGlFKUaBVLyGgWR0BLlk6Lfk3kdX2UKGgGaAloD0MIdEF9y5xKYMCUhpRSlGgVS8hoFkdAS7BMlC1JDnV9lChoBmgJaA9DCJXTnpIz5XjAlIaUUpRoFUvIaBZHQEuwOpbUwzt1fZQoaAZoCWgPQwhybD1DuGNgwJSGlFKUaBVLyGgWR0BLyduxbB42dX2UKGgGaAloD0MIVTAqqZMDeMCUhpRSlGgVS8hoFkdAS8nIsAeaKHV9lChoBmgJaA9DCIdNZOYCsWDAlIaUUpRoFUvIaBZHQEwYilBQemx1fZQoaAZoCWgPQwh324XmuqdhwJSGlFKUaBVLyGgWR0BMGHhsImgKdX2UKGgGaAloD0MIpUxqaEPNcMCUhpRSlGgVS8hoFkdATDIYpDu0C3V9lChoBmgJaA9DCEHw+PYuTXDAlIaUUpRoFUvIaBZHQEwyBfa6BiF1fZQoaAZoCWgPQwhnuAGfnyNhwJSGlFKUaBVLyGgWR0BMS7L+xW1ddX2UKGgGaAloD0MIJuFCHkH5cMCUhpRSlGgVS8hoFkdATEugOBlMAXV9lChoBmgJaA9DCDKQZ5dvlmDAlIaUUpRoFUvIaBZHQExlSDyvs7d1fZQoaAZoCWgPQwhvEoPAyqFgwJSGlFKUaBVLyGgWR0BMZTU7Sy+pdX2UKGgGaAloD0MIWBr4Uc0kccCUhpRSlGgVS8hoFkdATH7odMj/uXV9lChoBmgJaA9DCIeHMH6aEmHAlIaUUpRoFUvIaBZHQEx+1YQrc0t1fZQoaAZoCWgPQwiP3nAfOch4wJSGlFKUaBVLyGgWR0BMzCSRr8BNdX2UKGgGaAloD0MIZ/LNNrd3YMCUhpRSlGgVS8hoFkdATMwSteUpu3V9lChoBmgJaA9DCDJaR1VTGHrAlIaUUpRoFUvIaBZHQEzl9LpRoAZ1fZQoaAZoCWgPQwi6E+y/ToFhwJSGlFKUaBVLyGgWR0BM5eIEbHZLdX2UKGgGaAloD0MIPq4NFWN5YcCUhpRSlGgVS8hoFkdATP/iFTNt7HV9lChoBmgJaA9DCOIftvRIxoDAlIaUUpRoFUvIaBZHQEz/z0Yj0MB1fZQoaAZoCWgPQwjmzHaFvuZgwJSGlFKUaBVLyGgWR0BNGd/J/5LzdX2UKGgGaAloD0MI5zbhXtlDccCUhpRSlGgVS8hoFkdATRnNNahYeXV9lChoBmgJaA9DCBLds67R7GDAlIaUUpRoFUvIaBZHQE0zhz/6wdN1fZQoaAZoCWgPQwiAgosV9Up4wJSGlFKUaBVLyGgWR0BNM3SjQAuJdX2UKGgGaAloD0MIoG0164yCd8CUhpRSlGgVS8hoFkdATYDhJiAlOXV9lChoBmgJaA9DCC3saYc/jHDAlIaUUpRoFUvIaBZHQE2Az1schkl1fZQoaAZoCWgPQwjV6qurQtdxwJSGlFKUaBVLyGgWR0BNmrlNlAeJdX2UKGgGaAloD0MIYp0q37M0ecCUhpRSlGgVS8hoFkdATZqmdiDujXV9lChoBmgJaA9DCDHsMCZ983fAlIaUUpRoFUvIaBZHQE2yx8D0UXZ1fZQoaAZoCWgPQwg+BitOtcFuwJSGlFKUaBVLyGgWR0BNsrUCq6vrdX2UKGgGaAloD0MIaM9lapLwYMCUhpRSlGgVS8hoFkdATco1cdHUdHV9lChoBmgJaA9DCNC52/WSPXHAlIaUUpRoFUvIaBZHQE3KIrvsqrl1fZQoaAZoCWgPQwh968N6Y417wJSGlFKUaBVLyGgWR0BN4ZwGW2PUdX2UKGgGaAloD0MICD2bVZ+xcMCUhpRSlGgVS8hoFkdATeGJHiFTN3V9lChoBmgJaA9DCJs3TgqzlHDAlIaUUpRoFUvIaBZHQE4ofPomoit1fZQoaAZoCWgPQwihZd0/ljBgwJSGlFKUaBVLyGgWR0BOKGs3hn8LdX2UKGgGaAloD0MIlExO7QyvYMCUhpRSlGgVS8hoFkdATj/uTibUgHV9lChoBmgJaA9DCHyBWaHI1HDAlIaUUpRoFUvIaBZHQE4/22Xsw+N1fZQoaAZoCWgPQwhv8IXJ1BRhwJSGlFKUaBVLyGgWR0BOV3dKujh2dX2UKGgGaAloD0MIhEVFnE4VYcCUhpRSlGgVS8hoFkdATldkvsZ5zHV9lChoBmgJaA9DCHN/9bhvF1/AlIaUUpRoFUvIaBZHQE5u2itaIN51fZQoaAZoCWgPQwhNofMaOxRhwJSGlFKUaBVLyGgWR0BObsd92HLzdX2UKGgGaAloD0MIH9YbtUKccMCUhpRSlGgVS8hoFkdAToZCx/ustHV9lChoBmgJaA9DCF4td2YCr2HAlIaUUpRoFUvIaBZHQE6GL9/BnBd1fZQoaAZoCWgPQwjwvioXKtRhwJSGlFKUaBVLyGgWR0BOzBD5TIeYdX2UKGgGaAloD0MIAhJNoIj8YMCUhpRSlGgVS8hoFkdATsv++/QBxXV9lChoBmgJaA9DCM064/tiJ2HAlIaUUpRoFUvIaBZHQE7jffoA4n51fZQoaAZoCWgPQwhGQfD49jZwwJSGlFKUaBVLyGgWR0BO42saKk2xdX2UKGgGaAloD0MI0jdpGhRoX8CUhpRSlGgVS8hoFkdATvrwSamXPnV9lChoBmgJaA9DCDYf14aKnnDAlIaUUpRoFUvIaBZHQE763ZPEbYN1fZQoaAZoCWgPQwiazeMwmD8SwJSGlFKUaBVLyGgWR0BPEl2NedCmdX2UKGgGaAloD0MIzgAXZAtNcMCUhpRSlGgVS8hoFkdATxJK6FuejHV9lChoBmgJaA9DCL2o3a+C82DAlIaUUpRoFUvIaBZHQE8pz+3pfQd1fZQoaAZoCWgPQwgk0GBTZ7NwwJSGlFKUaBVLyGgWR0BPKb1AZ88cdX2UKGgGaAloD0MI1xh0QuiUX8CUhpRSlGgVS8hoFkdAT2/w5NoJzHV9lChoBmgJaA9DCJjbvdwn5mHAlIaUUpRoFUvIaBZHQE9v3s5XEIh1fZQoaAZoCWgPQwg3/G665V13wJSGlFKUaBVLyGgWR0BPhq6vq1PWdX2UKGgGaAloD0MITWpoA7ABEMCUhpRSlGgVS8hoFkdAT4ab2Dg62nV9lChoBmgJaA9DCHDs2XOZr3bAlIaUUpRoFUvIaBZHQE+bqqwQlKN1fZQoaAZoCWgPQwiUwOYc/N94wJSGlFKUaBVLyGgWR0BPm5e7cwg1dX2UKGgGaAloD0MI7ZxmgXYHFsCUhpRSlGgVS8hoFkdAT7CPwNLDh3V9lChoBmgJaA9DCJPJqZ1hMnLAlIaUUpRoFUvIaBZHQE+wfMfRu0l1fZQoaAZoCWgPQwjK4Ch59bSBwJSGlFKUaBVLyGgWR0BPxW4EwFkhdX2UKGgGaAloD0MI7ZxmgfYOYcCUhpRSlGgVS8hoFkdAT8VbHIZIhHV9lChoBmgJaA9DCFuaWyGs1WDAlIaUUpRoFUvIaBZHQFADV5KODJ51fZQoaAZoCWgPQwh/hcyVAah9wJSGlFKUaBVLyGgWR0BQA05+6RQrdX2UKGgGaAloD0MIz0nvG18kYcCUhpRSlGgVS8hoFkdAUA3hybQTmHV9lChoBmgJaA9DCG/XS1MEm2DAlIaUUpRoFUvIaBZHQFAN2FFlTWJ1fZQoaAZoCWgPQwjVeyqn/bR3wJSGlFKUaBVLyGgWR0BQGEWl/H5rdX2UKGgGaAloD0MIsDcxJOdNcMCUhpRSlGgVS8hoFkdAUBg8OkLx7XV9lChoBmgJaA9DCKadmssNiGDAlIaUUpRoFUvIaBZHQFAis4T9KmN1fZQoaAZoCWgPQwgArI4c6dwTwJSGlFKUaBVLyGgWR0BQIqoZQ53ldX2UKGgGaAloD0MIYOemzThYYMCUhpRSlGgVS8hoFkdAUC0mOU+s5nV9lChoBmgJaA9DCNxI2SJp+mDAlIaUUpRoFUvIaBZHQFAtHMUypJh1ZS4="
76
+ },
77
+ "ep_success_buffer": {
78
+ ":type:": "<class 'collections.deque'>",
79
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
80
+ },
81
+ "_n_updates": 49,
82
+ "n_steps": 1024,
83
+ "gamma": 0.9,
84
+ "gae_lambda": 0.95,
85
+ "ent_coef": 0.0,
86
+ "vf_coef": 0.0,
87
+ "max_grad_norm": 0.0,
88
+ "normalize_advantage": true,
89
+ "batch_size": 128,
90
+ "cg_max_steps": 15,
91
+ "cg_damping": 0.1,
92
+ "line_search_shrinking_factor": 0.8,
93
+ "line_search_max_iter": 10,
94
+ "target_kl": 0.01,
95
+ "n_critic_updates": 15,
96
+ "sub_sampling_factor": 1
97
+ }
trpo-Pendulum-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:effb82f932ad31c88bb41e462dedde9bbffc3a8314259a8f41839373a20e89d6
3
+ size 40879
trpo-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcb84e1285e187bdfde4e252d26e9654d64029a349d827d28c31e127bd03ca9c
3
+ size 40510
trpo-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0