qingshan777
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,188 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- liuhaotian/LLaVA-CC3M-Pretrain-595K
|
5 |
+
- liuhaotian/LLaVA-Instruct-150K
|
6 |
+
- FreedomIntelligence/ALLaVA-4V-Chinese
|
7 |
+
- shareAI/ShareGPT-Chinese-English-90k
|
8 |
+
language:
|
9 |
+
- zh
|
10 |
+
- en
|
11 |
+
pipeline_tag: visual-question-answering
|
12 |
+
---
|
13 |
+
<br>
|
14 |
+
<br>
|
15 |
+
|
16 |
+
# Model Card for IAA: Inner-Adaptor Architecture
|
17 |
+
|
18 |
+
**Github**:https://github.com/360CVGroup/Inner-Adaptor-Architecture
|
19 |
+
|
20 |
+
**[IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities](https://www.arxiv.org/abs/2408.12902)**
|
21 |
+
|
22 |
+
</br>
|
23 |
+
Bin Wang*, Chunyu Xie*, Dawei Leng†, Yuhui Yin(*Equal Contribution, ✝Corresponding Author)
|
24 |
+
</br>
|
25 |
+
[![arXiv](https://img.shields.io/badge/arXiv-2408.12902-b31b1b.svg)](https://www.arxiv.org/abs/2408.12902)
|
26 |
+
|
27 |
+
We propose a MLLM based on Inner-Adaptor Architecture (IAA). IAA demonstrates that training with a frozen language model can surpass the models with fine-tuned LLMs in both multimodal comprehension and visual grounding tasks. Moreover, after deployment, our approach incorporates multiple workflows, thereby preserving the NLP proficiency of the language model. With a single download, the model can be finetuned to cater to various task specifications. Enjoy the seamless experience of utilizing our IAA model.
|
28 |
+
|
29 |
+
|
30 |
+
<p align="center">
|
31 |
+
<img src="https://github.com/360CVGroup/Inner-Adaptor-Architecture/iaa/overview.png" width=80%/>
|
32 |
+
</p>
|
33 |
+
|
34 |
+
|
35 |
+
## Model Performance
|
36 |
+
### Main Results on General Multimodal Benchmarks.
|
37 |
+
|
38 |
+
<p align="center">
|
39 |
+
<img src="https://github.com/360CVGroup/Inner-Adaptor-Architecture/iaa/mmresult.png" width=90%/>
|
40 |
+
</p>
|
41 |
+
|
42 |
+
### Results on Visual Grounding Benchmarks.
|
43 |
+
<!-- grounding_re -->
|
44 |
+
|
45 |
+
<p align="center">
|
46 |
+
<img src="https://github.com/360CVGroup/Inner-Adaptor-Architecture/iaa/grounding_re.png" width=90%/>
|
47 |
+
</p>
|
48 |
+
|
49 |
+
### Comparison on text-only question answering.
|
50 |
+
<!-- grounding_re -->
|
51 |
+
|
52 |
+
<p align="center">
|
53 |
+
<img src="https://github.com/360CVGroup/Inner-Adaptor-Architecture/iaa/NLPresult.png" width=90%/>
|
54 |
+
</p>
|
55 |
+
|
56 |
+
## Quick Start 🤗
|
57 |
+
### First pull off our model
|
58 |
+
```Shell
|
59 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
+
import torch
|
61 |
+
from PIL import Image
|
62 |
+
|
63 |
+
checkpoint = "qihoo360/iaa-14-hf"
|
64 |
+
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.float16, device_map='cuda', trust_remote_code=True).eval()
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
67 |
+
vision_tower = model.get_vision_tower()
|
68 |
+
vision_tower.load_model()
|
69 |
+
vision_tower.to(device="cuda", dtype=torch.float16)
|
70 |
+
image_processor = vision_tower.image_processor
|
71 |
+
tokenizer.pad_token = tokenizer.eos_token
|
72 |
+
|
73 |
+
terminators = [
|
74 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>",)
|
75 |
+
]
|
76 |
+
```
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
### Multimodal Workflow: task_type="MM"
|
81 |
+
```Shell
|
82 |
+
image = Image.open("readpanda.jpg").convert('RGB')
|
83 |
+
query = "What animal is in the picture?"
|
84 |
+
|
85 |
+
inputs = model.build_conversation_input_ids(tokenizer, query=query, image=image, image_processor=image_processor)
|
86 |
+
|
87 |
+
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
|
88 |
+
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)
|
89 |
+
|
90 |
+
output_ids = model.generate(
|
91 |
+
input_ids,
|
92 |
+
task_type="MM",
|
93 |
+
images=images,
|
94 |
+
do_sample=False,
|
95 |
+
eos_token_id=terminators,
|
96 |
+
num_beams=1,
|
97 |
+
max_new_tokens=512,
|
98 |
+
use_cache=True)
|
99 |
+
|
100 |
+
input_token_len = input_ids.shape[1]
|
101 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
102 |
+
outputs = outputs.strip()
|
103 |
+
print(outputs)
|
104 |
+
```
|
105 |
+
|
106 |
+
### Grounding Workflow: task_type="G"
|
107 |
+
```Shell
|
108 |
+
image = Image.open("COCO_train2014_000000014502.jpg").convert('RGB')
|
109 |
+
query = "Please provide the bounding box coordinate of the region this sentence describes: dude with black shirt says circa."
|
110 |
+
|
111 |
+
inputs = model.build_conversation_input_ids(tokenizer, query=query, image=image, image_processor=image_processor)
|
112 |
+
|
113 |
+
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
|
114 |
+
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)
|
115 |
+
|
116 |
+
output_ids = model.generate(
|
117 |
+
input_ids,
|
118 |
+
task_type="G",
|
119 |
+
images=images,
|
120 |
+
do_sample=False,
|
121 |
+
eos_token_id=terminators,
|
122 |
+
num_beams=1,
|
123 |
+
max_new_tokens=512,
|
124 |
+
use_cache=True)
|
125 |
+
input_token_len = input_ids.shape[1]
|
126 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
127 |
+
outputs = outputs.strip()
|
128 |
+
print(outputs)
|
129 |
+
```
|
130 |
+
|
131 |
+
### Text-only Workflow: task_type="Text"
|
132 |
+
|
133 |
+
```Shell
|
134 |
+
query = "What is the approximate weight of an adult red panda?"
|
135 |
+
inputs = model.build_conversation_input_ids(tokenizer, query=query)
|
136 |
+
|
137 |
+
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
|
138 |
+
images = None
|
139 |
+
|
140 |
+
|
141 |
+
output_ids = model.generate(
|
142 |
+
input_ids,
|
143 |
+
task_type="Text",
|
144 |
+
images=images,
|
145 |
+
do_sample=False,
|
146 |
+
eos_token_id=terminators,
|
147 |
+
num_beams=1,
|
148 |
+
max_new_tokens=512,
|
149 |
+
use_cache=True)
|
150 |
+
|
151 |
+
input_token_len = input_ids.shape[1]
|
152 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
153 |
+
outputs = outputs.strip()
|
154 |
+
print(outputs)
|
155 |
+
```
|
156 |
+
|
157 |
+
## We Are Hiring
|
158 |
+
We are seeking academic interns in the Multimodal field. If interested, please send your resume to [email protected].
|
159 |
+
|
160 |
+
## Citation
|
161 |
+
If you find IAA useful for your research and applications, please cite using this BibTeX:
|
162 |
+
|
163 |
+
```
|
164 |
+
@article{Wang2024IAA,
|
165 |
+
title={IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities},
|
166 |
+
author={Bin Wang and Chunyu Xie and Dawei Leng and Yuhui Yin},
|
167 |
+
journal={arXiv preprint arXiv:2408.12902},
|
168 |
+
year={2024},
|
169 |
+
}
|
170 |
+
```
|
171 |
+
|
172 |
+
## License
|
173 |
+
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses.
|
174 |
+
The content of this project itself is licensed under the [Apache license 2.0]
|
175 |
+
|
176 |
+
**Where to send questions or comments about the model:**
|
177 |
+
https://github.com/360CVGroup/Inner-Adaptor-Architecture
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
## Related Projects
|
182 |
+
This work wouldn't be possible without the incredible open-source code of these projects. Huge thanks!
|
183 |
+
- [Meta Llama 3](https://github.com/meta-llama/llama3)
|
184 |
+
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)
|
185 |
+
- [360VL](https://github.com/360CVGroup/360VL)
|
186 |
+
|
187 |
+
|
188 |
+
|