--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: google illustration widget: - text: google illustration, a winter pond, realistic, simplistic output: url: images/example_vr32zqhzt.png - text: >- google illustration, chameleon on branch, cartoon style, vibrant colors, green and yellow, tropical setting, simple background, detailed leaves, playful design output: url: images/example_9f0onnif2.png - text: >- google illustration, orca leaping out of ocean, detailed, realistic, blue, white, and black output: url: images/example_mkwjkqhvs.png - text: google illustration, a coffee cup on a windowsill, geometric, natural light output: url: images/example_sfxutonf9.png - text: >- google illustration, blue watch, simplistic design, clean lines, minimalistic output: url: images/example_03ldp8bmf.png - text: >- google illustration, a barn in spring, green, brown, simplistic, vibrant colors, minimalistic output: url: images/example_8rowj27tp.png tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- # SDXL LoRA DreamBooth - qingy2024/GI_LoRA (Google Illustrations Preview) ## Model description These are qingy2024/GI_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use google illustration to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](qingy2024/GI_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]