File size: 10,215 Bytes
ae0b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c571bc
ae0b2e0
 
bb2f192
6c571bc
 
ae0b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
871f9d3
 
8c5de63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae0b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871f9d3
 
 
 
 
 
8c5de63
871f9d3
 
ae0b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871f9d3
ae0b2e0
871f9d3
 
 
 
ae0b2e0
 
 
 
 
871f9d3
 
ae0b2e0
57f3cde
ae0b2e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
library_name: pytorch
license: mit
pipeline_tag: depth-estimation
tags:
- quantized
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/midas_quantized/web-assets/model_demo.png)

# Midas-V2-Quantized: Optimized for Mobile Deployment
## Quantized Deep Convolutional Neural Network model for depth estimation


Midas is designed for estimating depth at each point in an image.

This model is an implementation of Midas-V2-Quantized found [here](https://github.com/isl-org/MiDaS).


This repository provides scripts to run Midas-V2-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/midas_quantized).


### Model Details

- **Model Type:** Depth estimation
- **Model Stats:**
  - Model checkpoint: MiDaS_small
  - Input resolution: 256x256
  - Number of parameters: 16.6M
  - Model size: 16.6 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.101 ms | 0 - 58 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.436 ms | 0 - 63 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 8.722 ms | 1 - 5 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.766 ms | 0 - 27 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.006 ms | 0 - 27 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 7.116 ms | 1 - 280 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.712 ms | 0 - 25 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.01 ms | 0 - 22 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 7.852 ms | 1 - 209 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
| Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.77 ms | 0 - 28 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.868 ms | 0 - 7 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 15.397 ms | 0 - 3 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.083 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.308 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | SA7255P ADP | SA7255P | TFLITE | 11.089 ms | 0 - 23 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | SA7255P ADP | SA7255P | QNN | 12.231 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.102 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.326 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | SA8295P ADP | SA8295P | TFLITE | 1.943 ms | 0 - 23 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | SA8295P ADP | SA8295P | QNN | 2.43 ms | 0 - 6 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.108 ms | 0 - 60 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.327 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | SA8775P ADP | SA8775P | TFLITE | 1.605 ms | 0 - 26 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | SA8775P ADP | SA8775P | QNN | 2.096 ms | 0 - 6 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.445 ms | 0 - 31 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
| Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.816 ms | 0 - 29 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.471 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
| Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.848 ms | 24 - 24 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install "qai-hub-models[midas_quantized]"
```



## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.midas_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.midas_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.midas_quantized.export
```
```
Profiling Results
------------------------------------------------------------
Midas-V2-Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 1.1                    
Estimated peak memory usage (MB): [0, 58]                
Total # Ops                     : 145                    
Compute Unit(s)                 : NPU (145 ops)          
```




## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.midas_quantized.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.midas_quantized.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Midas-V2-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/midas_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Midas-V2-Quantized can be found [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
* [Source Model Implementation](https://github.com/isl-org/MiDaS)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).