quanghuy123
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -34,9 +34,9 @@ Additionally, the model supports **Retrieval-Augmented Generation (RAG)**, which
|
|
34 |
|---------------------------|----------------------------------------------|
|
35 |
| **Maximum Sequence Length**| 512 tokens |
|
36 |
| **Language** | Primarily focused on **Vietnamese** legal texts|
|
37 |
-
| **License** | Apache-2.0 License |
|
38 |
| **Task** | Question-answering, Information extraction |
|
39 |
| **RAG Support** | Yes |
|
|
|
40 |
|
41 |
### References
|
42 |
- Zaib, Munazza and Tran, Dai Hoang and Sagar, Subhash and Mahmood, Adnan and Zhang, Wei E. and Sheng, Quan Z. (2021). BERT-CoQAC: BERT-based Conversational Question Answering in Context. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*.
|
|
|
34 |
|---------------------------|----------------------------------------------|
|
35 |
| **Maximum Sequence Length**| 512 tokens |
|
36 |
| **Language** | Primarily focused on **Vietnamese** legal texts|
|
|
|
37 |
| **Task** | Question-answering, Information extraction |
|
38 |
| **RAG Support** | Yes |
|
39 |
+
| **LLMS Generate** | Yes |
|
40 |
|
41 |
### References
|
42 |
- Zaib, Munazza and Tran, Dai Hoang and Sagar, Subhash and Mahmood, Adnan and Zhang, Wei E. and Sheng, Quan Z. (2021). BERT-CoQAC: BERT-based Conversational Question Answering in Context. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*.
|