---
license: cc
datasets:
- VMware/open-instruct-v1-oasst-dolly-hhrlhf
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
# rahuldshetty/vmw-open-llama-13b-open-instruct-ntk4k-8bit
This is a 8bit quantized version of VMware's Open-LLAMA-13B model that supports 4k context lengths through NTK Scaled Embeddings.
Quantization is performed using [bitsandbytes](https://huggingface.co/docs/transformers/main_classes/quantization#load-a-large-model-in-8bit).
**Below details are taken from the official model repository**
# VMware/open-llama-13B-open-instruct
Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for COMMERCIAL USE.
NOTE : The model was trained using the Alpaca prompt template \
NOTE : Fast tokenizer results in incorrect encoding, set the ```use_fast = False``` parameter, when instantiating the tokenizer\
NOTE : The model might struggle with code as the tokenizer merges multiple spaces
## License
- Commercially Viable
- Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0
- Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0
## Nomenclature
- Model : Open-llama
- Model Size: 13B parameters
- Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf)
## Use in Transformers
```
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'VMware/open-llama-13b-open-instruct'
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='sequential')
prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
prompt = 'Explain in simple terms how the attention mechanism of a transformer model works'
inputt = prompt_template.format(instruction= prompt)
input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
output1 = model.generate(input_ids, max_length=512)
input_length = input_ids.shape[1]
output1 = output1[:, input_length:]
output = tokenizer.decode(output1[0])
print(output)
```
## Finetuning details
The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning)
## Evaluation
TODO