DQN LunarLander-v2 1M steps
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LinarLander-v2.zip +3 -0
- ppo-LinarLander-v2/_stable_baselines3_version +1 -0
- ppo-LinarLander-v2/data +115 -0
- ppo-LinarLander-v2/policy.optimizer.pth +3 -0
- ppo-LinarLander-v2/policy.pth +3 -0
- ppo-LinarLander-v2/pytorch_variables.pth +3 -0
- ppo-LinarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -46.76 +/- 20.50
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x162525ea0>", "_build": "<function DQNPolicy._build at 0x162525f30>", "make_q_net": "<function DQNPolicy.make_q_net at 0x162525fc0>", "forward": "<function DQNPolicy.forward at 0x162526050>", "_predict": "<function DQNPolicy._predict at 0x1625260e0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x162526170>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x162526200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x1625296c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAgZW3kl9XF7VWL+p9UmDEnClyhQt3xwSSb5oX6ewucCBHK6eZ2kKPLb1ChWr/tL2G5ToPKYBXtLtZyZa+1k7h5iq5a6kPWlji97XrwKvGK+xPPLauKNXBijbU2bFZaLegW3DJn4iHLYU/0ygy5WtpolFT7Z0A7SxlxAsKP1DspWW2cFdCzXfjkonApEC80v5WqGRPZzIGru4P3hIL5NsfhzIaKZtvRDTpM4GdwOEzp11E/FC8Wz8s/+KbVwRJRwfgCK1SZZ4EwHL+PRugheilvQiluS1TO8tAxSNnyFiX6CejURf8tqYJN6m2ioI0hnqPlt31LkswqOSu6hmtw9cBS9FL7gypRi8Pkz3TOaQQ7w4zGuZ/C1ILxhENbYCwXdhW1ZrYMLg0bjs4EnhMnEyZb8Wutr1sVPvSfX5gjJ8w7kHgI+ZUnEYhjUyBm4JYUqLdGuBGhh9dE1WV+Dz1aXZ1Lbed8nSEgU4N4hXbJYlU1D2R2LP3uU1+8NKdHaSQ+y//NzeDBpj+qFiVO79bIM8qBgZYO29m9XUlx5spXdzQhJ40+DV+nAXZjp4+h9HqsbD61CR0jVbd5a6R5UPaHX1gmulExHbwiiNL7tUKcCuIbL19lDywkuXvCI7HVnakvB8fyhvib6edYeXBpfUQOAqG8TH04DtKhjoHT7oPm2tIo1bSA+JCNKsu3usHOpfUpA6GMUF9fbVD09ztKFwYWBtO+bSEThSajomiqIttUPdvC5wY8/y2Y3osweDZjEWh0BzzWoOSS/Nh104BKc2q/WVhf4hT+aRHTi5vBefumScdb+u7SvSsN3J3CO3aXoouY1PhVDQ6blKZ0/ZhQG+K3SJjEDf1K0Za+f31UMAFrhRDLxAMG6pHc/E9QGyeMLTq5HRQPrZkOxT6OhD21J5ChZqGhu3BfNGab6uwMUi2lZ0fANlUETV8YXIdT1Kx8PCVPMgYad6qXxRUOPrj1FB7BOijTHo9mPdBG2zY7MbNJcGzn9tb3WU19h16v3/beUCHSsfWlcNfhxoy0m6JVKqOvYjUlINjf0Pf2gQx+6urJhgwh98ojNg6mPzXp6AEpnu9MmcEX08vkqDAHtdPOFA1BPk0Q9XPBjyvl4cKwAB4KLloI6N6tEkaIpBOwOeol+cPQQy6CK1b+8PR2a9lFRPM2+LBQpPslIaDHkmfvMnocQhNAKgw+CJRu7+G057CclD6kNURj4Gvca6d02FHMerBY88/WqQpwSVI2TYDsM4hL8QWSINa5PJjJDLkakF7sTKv8JSUC1kFkdV+HLqCWcyE8uL/Luil6EPiLtUS89HZDxv779NZQA1OOT72mPS1NXsWY+RYBjGkKPx6cgLDJr6vdWcGzzIk3hgzAjHeV1OcEYcqpR/3A3pFHDg2IlHHFU/g5QydTNB1f/2OZCWwNbL9Gt4VcTSf9eJNnrzEvsIdExrt0fNN8JdmkDt3JJdvAktXBZ1No3T+7p3Ckn6ApM1n1POufj6wqtchtjUJZo/WZaZ32n+qoiIZ08WsTAEGAseQFiRgIlsd8MZOMMYLWC7rztN0iFwcNrYeMUpQiqhhy+05fESgjqJdsgHkPRUvJiV+LsYn66DDXCaeZ3/tJX6b1iNBysCD2VaR+qLFgg3IxlYp9alvhdS2attwB05Fh9aePxhIRszFq/6LDauvZNnsSYYLpMGhw8X6aK/kwPvJ9Q5LA+F7ohDp51rSKpid03sWxVHZCBTweSP5oUma61LFEQJMdGKYMC+J0gSzKWJB7PN9Klo0yQ8UEre6mmuTC3YWX9AczQscqmgASJHHk1IsA01T3jrjEUlsrLCFpvJ6Aaz5cou3AcEqMlE4VGdzuTcDLIPmX4yWKxYKNo0ROnq/RQqdxNVTj1FaFXwPXdCZXkwOrhkhBpKJ+PjnOnXUxUJ5QAphb1z3JSJi6wY0alMwccmBwN62l5yOud5Etl7NZC7l1FOniETd2S+r4fWcrlpPBpwVd4lA5JiUHI3JjfPdAdiUvVsEo7ArevHtggY4XZpu5nGjEJpSqw/hMxurApDt83oavEb3OopGBizXhAP2rp1xPFv2twA25lfvPSbaWD70KY+0OxPaziOyH18UIXeb7dcMjCSNvxNDIIgZxGoilf9wvIAqYOO2sYIroffJcq+iIuJ+Vv0SZsCY1RF23p73A7Y6ufbF4dD6hGWBUgge7TxCokRxMP4SYNTKz+EBDGr63FW3l+OxeiP0hAUNueRDqSBSGb+387fltjQXI2PLaLCPFt9TOuMJS0gVynYdVmNNjpg7JWTL2JN3ucTseyT+IoUo/F/mlgGeh0d340mjeHgpEmuvovY6ockasWwrpP7kMesMVeX1XuQ0LyPMGaTPWVvIjTygJkmS9yXY/FtEotDDOLljoRouhWAt9PorG83JN+soXJcDDVrVyWHHyM2MalrV/MUqZL5MN1TknHXyjmiAtNwDQAfGTgAMh380Z+aI+5uZM6xGX64qZfI+atUf4whQ71Pz422I4Cg1HqstUqeO73dYyzRTOdGxOJzFXGisSF0kXJgm6YYN+8w9pkeo7C9YoPcUDD70k8tF4cgza/l2BdoIkIHomD/qiBuLcHYrJk4SIzmsXEzyvBcm9fyhmVwHI+Dur8MM2B3LRmEuNm24YZZMz0HP/7vKjkOqQByRpE4XJtoULXkG2q4dJVlK9D0bBAFnx5yULTuVOkq6dmKe+FlezzQtRdwZum95IZMwcGDBT6tPz4IWXLGKIxIPD4gfV2mtHrixpROIGv4qAQQLkzKEIWhWcYU1nqI+l5ME1JIj8LTbXavc1NpfXjHF9utchxEBsRwZF6IYaqGIEjBt5cprAlvMuMBxMH4Sr8z9i+SAE9wQnvtjATbirq7asQDzMHog9IXHeGxEwoyqLtpW/N/prp9tHPe+sMAVzgzSAHtWA9CPeM2lF8GSsbHYSk2yJXfX8OWKTIIdJojMjR9XZR2tfqpde3qYmqsXX76Yi7WxUnPr8t3f2A7e3Rb9eLG3E2uGP9AU2csTdwAm0dgpHiTbTlGoNFctZajw3tNMg4SWoXSIP3fKTV57BmR6PbG18XnfcIWjYE7+ssTCpH7ozguiCYeRcYH9x+CUP1RR5Q5T7ZGbdgK9j80NSHLL+s56FJp+xxPDamNO3kATaQ39d03XTpU3UwaRrA2li1q5GtAc7HIQWhKF5ekgWrU22y8X5gNYG/veZBQ3Qd2tHkPaPmQnpYbrLNHgeXRcq8mShsdZp+IBsKBby+K4LSMPIft9F0lWMw/0SWa+6zRSDWURzhdYM+84PkHECpYM33R9uU84Aw+jWax7Zca02MGTXt4vlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNAAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656882112.708856, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANVGjL7cWKg/zQ/XPZcXUbw7BLa9hPgkPgAAAAAAAAAACIC8vruQWz9M9bU9wKejO4fSfrx7UqE9AAAAAAAAAABbj7y+Gls4P+ah/r3P7KG7Mi3OvZ4OoL0AAAAAAAAAAE018b2pAqo/Z6KnvovPSb1PMRS+A8LXvQAAAAAAAAAAXsuwvjLDMD+qK1a9AYe9uzP7xD1oDna9AAAAAAAAAADI8rq+Q4sNPzauN73gCgA9LWxHvAIgT70AAAAAAAAAABpgsr5VnkI/gkHVvKv0dDzghjU8sCP+vAAAAAAAAAAAEAqrvpGTLD+YBei94PP9vEwCxjw94gC+AAAAAAAAAAC+DaG+0jsAP8LyQLz9nFI7gR6gPa4L9rwAAAAAAAAAAOaFwr5a104/gN17PZbJ0jyCGxe9eGk2PQAAAAAAAAAAGkamvpQKjj7tJ9C8dYjwO5MbXTwuMo27AAAAAAAAAABm1As8Rui0P6HRFj7UPgS937QpPMgDAj4AAAAAAAAAAIrSsL7fhS8/mhFrvNGtpLyx+7c94ttKvQAAAAAAAAAAMq+nvpuvJj+tOpe9SX1rPGNw1jla34C9AAAAAAAAAACGCzS+Lt2gP1vPq7tnBZO9KGyKPXrkEj0AAAAAAAAAADN6Fr3Z1ow/xriyvdvr7L1tbLu9AQykPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB7bjL6kYqg/SsG1PSQdVr17g8a9bW0ePgAAAAAAAAAAuPm8vm6JWz8TF5I9O4DKvPSsn7yjzoE9AAAAAAAAAAA757u+AGI4PzMCAr70hPe8dyzGvblMlr0AAAAAAAAAAABl6r2eJqo/P3evvgUQk712zA6+/nPhvQAAAAAAAAAA3YKwvgTMMD91v1m9K4iuvPUhyz0gN4m9AAAAAAAAAACmtLq+I10NPxx2gL3x4ii8W/8dvKIaib0AAAAAAAAAAO07sr5NiEI/DuDXvDAYRbvi8E48zKUDvQAAAAAAAAAAOG2qvnPBLD+wBei9guONu/+P+TxV4gC+AAAAAAAAAABS/KC+NDcAPwXjLrxmgmu82jGjPX20C70AAAAAAAAAAHPZwr5/sU4/UBNOPcteX7xjOiC9RmIZPQAAAAAAAAAAgiSmvu/0jT5u9U+8uk+bvDyjYDzGT+Q7AAAAAAAAAAAzS+U7DwC1Pw6sIj6Daqm7nWiDOwARpT0AAAAAAAAAAHW8sL69oy8/5hFrvDod1zv9Db0949tKvQAAAAAAAAAAO0qnvmmaJj/I8XW9dmKsvEMAaTtbOUy9AAAAAAAAAACGAjS+DBKhP5bPq7uB0Di9CsCGPX3kEj0AAAAAAAAAAIARE71ULI0/nXnUvcMf6L08oMO92mCKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 1700, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoz1eSIdfUcCUhpRSlIwBbJRN6AOMAXSUR0C/Dw7qUu+RdX2UKGgGaAloD0MI7PgvEAQwU8CUhpRSlGgVTegDaBZHQL8PmtT1kDp1fZQoaAZoCWgPQwip2QOtwJtawJSGlFKUaBVN6ANoFkdAvxCR3eN1hnV9lChoBmgJaA9DCKjIIeLmxkrAlIaUUpRoFU3oA2gWR0C/EOkzsQd0dX2UKGgGaAloD0MIfT7KiAuKVsCUhpRSlGgVTegDaBZHQL8RQPWxyGV1fZQoaAZoCWgPQwh16V+SyhVXwJSGlFKUaBVN6ANoFkdAvxF+hysCDHV9lChoBmgJaA9DCOlDF9S3JkbAlIaUUpRoFU3oA2gWR0C/EiDin5zpdX2UKGgGaAloD0MI6+HLRBEBVsCUhpRSlGgVTegDaBZHQL8Seszl90B1fZQoaAZoCWgPQwhjsyPVd29ZwJSGlFKUaBVN6ANoFkdAvxK+uZCv5nV9lChoBmgJaA9DCBno2hfQeFHAlIaUUpRoFU3oA2gWR0C/EzgLApKBdX2UKGgGaAloD0MIhUTaxp/eUcCUhpRSlGgVTegDaBZHQL8TV7Ciypt1fZQoaAZoCWgPQwialIJuL1hSwJSGlFKUaBVN6ANoFkdAvxOxUjs2N3V9lChoBmgJaA9DCEpDjUKSOlfAlIaUUpRoFU3oA2gWR0C/FDCSV4X5dX2UKGgGaAloD0MIklm9w+34XcCUhpRSlGgVTegDaBZHQL8U0eTFERd1fZQoaAZoCWgPQwgl7NtJRGZcwJSGlFKUaBVN6ANoFkdAvxVWGIsRQXV9lChoBmgJaA9DCD/FceDVf1XAlIaUUpRoFU3oA2gWR0C/GlWxlg+hdX2UKGgGaAloD0MIYLAbti1QVMCUhpRSlGgVTegDaBZHQL8bN6F/QSl1fZQoaAZoCWgPQwjVdhN807BUwJSGlFKUaBVN6ANoFkdAvxuXjIaLoHV9lChoBmgJaA9DCMA9z582sVfAlIaUUpRoFU3oA2gWR0C/HFwCbMHKdX2UKGgGaAloD0MIEodsIF3FVcCUhpRSlGgVTegDaBZHQL8csE5Qxet1fZQoaAZoCWgPQwjeBN80fY1ZwJSGlFKUaBVN6ANoFkdAvx0AXZXdTHV9lChoBmgJaA9DCGGOHr+3eUjAlIaUUpRoFU3oA2gWR0C/HTtNet0WdX2UKGgGaAloD0MIKqkT0EQFWMCUhpRSlGgVTegDaBZHQL8dwmRNh3J1fZQoaAZoCWgPQwi0IJT3cVdcwJSGlFKUaBVN6ANoFkdAvx4OUr08NnV9lChoBmgJaA9DCGH7yRgfijLAlIaUUpRoFU3oA2gWR0C/HkiPMjeLdX2UKGgGaAloD0MIghyUMNOGUcCUhpRSlGgVTegDaBZHQL8etvQnhKl1fZQoaAZoCWgPQwgawFsgQRhVwJSGlFKUaBVN6ANoFkdAvx7St6ol2XV9lChoBmgJaA9DCO5AnfLo01TAlIaUUpRoFU3oA2gWR0C/HxxX4j8ldX2UKGgGaAloD0MIzlMdcjP+X8CUhpRSlGgVTegDaBZHQL8fic81XNl1fZQoaAZoCWgPQwifq63YX2tfwJSGlFKUaBVN6ANoFkdAvyANzdUKiXV9lChoBmgJaA9DCNPe4AuTI1jAlIaUUpRoFU3oA2gWR0C/IIc8s+V1dX2UKGgGaAloD0MI0lEOZhPET8CUhpRSlGgVTegDaBZHQL8lhnLJSzh1fZQoaAZoCWgPQwi5GAPrOHRfwJSGlFKUaBVN6ANoFkdAvyZ6iEg4fnV9lChoBmgJaA9DCP2DSIYcO1vAlIaUUpRoFU3oA2gWR0C/JuQ5R0lrdX2UKGgGaAloD0MIGjGzz2OWTcCUhpRSlGgVTegDaBZHQL8nyvs7dSF1fZQoaAZoCWgPQwiHa7WHvehYwJSGlFKUaBVN6ANoFkdAvygepm29c3V9lChoBmgJaA9DCP4o6sy9FmDAlIaUUpRoFU3oA2gWR0C/KHMN2C/XdX2UKGgGaAloD0MILjcY6rACX8CUhpRSlGgVTegDaBZHQL8osMMqjJx1fZQoaAZoCWgPQwj0T3CxojVRwJSGlFKUaBVN6ANoFkdAvylQvRJEpnV9lChoBmgJaA9DCISc9/9xxEvAlIaUUpRoFU3oA2gWR0C/KaGBSUC8dX2UKGgGaAloD0MINX7hlSRtSsCUhpRSlGgVTegDaBZHQL8p2sJIDo11fZQoaAZoCWgPQwiU+rK0U3NfwJSGlFKUaBVN6ANoFkdAvypN0T101nV9lChoBmgJaA9DCA8Ni1HXOV3AlIaUUpRoFU3oA2gWR0C/Kmyl3yI6dX2UKGgGaAloD0MIjbRU3o5bWsCUhpRSlGgVTegDaBZHQL8qxJDmbLF1fZQoaAZoCWgPQwjQudv10v5GwJSGlFKUaBVN6ANoFkdAvys8TZg5R3V9lChoBmgJaA9DCKqZtRSQH1rAlIaUUpRoFU3oA2gWR0C/K88w1zhhdX2UKGgGaAloD0MIl299WG/OVcCUhpRSlGgVTegDaBZHQL8sUc/+sHV1fZQoaAZoCWgPQwgAi/z6IYhWwJSGlFKUaBVN6ANoFkdAvzFMSPEKmnV9lChoBmgJaA9DCAKBzqRNK0jAlIaUUpRoFU3oA2gWR0C/Ml2ygPEsdX2UKGgGaAloD0MIv0nToGg6U8CUhpRSlGgVTegDaBZHQL8y3LYPGyZ1fZQoaAZoCWgPQwhr71NVaPlawJSGlFKUaBVN6ANoFkdAvzPhII4VAXV9lChoBmgJaA9DCBDmdi/3r13AlIaUUpRoFU3oA2gWR0C/NEMHObAldX2UKGgGaAloD0MIL2tiga85VcCUhpRSlGgVTegDaBZHQL80qkJ8fFJ1fZQoaAZoCWgPQwgVkPY/wCVUwJSGlFKUaBVN6ANoFkdAvzT2/IsAenV9lChoBmgJaA9DCMkeoWZIOlDAlIaUUpRoFU3oA2gWR0C/Nb0j5bhWdX2UKGgGaAloD0MIN24xPzfbVMCUhpRSlGgVTegDaBZHQL82Lr4Fia11fZQoaAZoCWgPQwheLXdmgl5SwJSGlFKUaBVN6ANoFkdAvzaCRyOrAHV9lChoBmgJaA9DCAjNrnsrPEnAlIaUUpRoFU3oA2gWR0C/Ny/dVNpNdX2UKGgGaAloD0MI66hqgqjmUcCUhpRSlGgVTegDaBZHQL83W1BMSK51fZQoaAZoCWgPQwh01NFxNbNVwJSGlFKUaBVN6ANoFkdAvzfR2Rq46XV9lChoBmgJaA9DCLQ5zm3C3FjAlIaUUpRoFU3oA2gWR0C/OF8NDtw8dX2UKGgGaAloD0MINnLdlPJoWcCUhpRSlGgVTegDaBZHQL85Aqaw2VF1fZQoaAZoCWgPQwiOBYVBmRpdwJSGlFKUaBVN6ANoFkdAvzmFsguAZ3V9lChoBmgJaA9DCAMjL2ti7VrAlIaUUpRoFU3oA2gWR0C/Pv3Vsk6cdX2UKGgGaAloD0MIWp2cobhoU8CUhpRSlGgVTegDaBZHQL9AEuIAOrh1fZQoaAZoCWgPQwjKoxthUeNUwJSGlFKUaBVN6ANoFkdAv0CJN5+pfnV9lChoBmgJaA9DCGQD6WLTgk7AlIaUUpRoFU3oA2gWR0C/QWx0Qsf8dX2UKGgGaAloD0MIDcLc7uUSWsCUhpRSlGgVTegDaBZHQL9Bxdu5z5p1fZQoaAZoCWgPQwhZ3eo56d1VwJSGlFKUaBVN6ANoFkdAv0Ianeizs3V9lChoBmgJaA9DCF36l6QyQ1XAlIaUUpRoFU3oA2gWR0C/Qlk+cH4XdX2UKGgGaAloD0MIyoy3lV7DWcCUhpRSlGgVTegDaBZHQL9C/fjjrAx1fZQoaAZoCWgPQwgS290DdAxSwJSGlFKUaBVN6ANoFkdAv0NR4cFQmHV9lChoBmgJaA9DCNldoKTAhlTAlIaUUpRoFU3oA2gWR0C/Q45FocrBdX2UKGgGaAloD0MIb7vQXKflS8CUhpRSlGgVTegDaBZHQL9EBkeIVM51fZQoaAZoCWgPQwhjRnh7EElRwJSGlFKUaBVN6ANoFkdAv0QmdOIqLHV9lChoBmgJaA9DCF3fh4OEj1DAlIaUUpRoFU3oA2gWR0C/RH+zhP0qdX2UKGgGaAloD0MIhA1Pr5QFTMCUhpRSlGgVTegDaBZHQL9E/oaUA1h1fZQoaAZoCWgPQwhmguFcw55SwJSGlFKUaBVN6ANoFkdAv0WlW3jMmnV9lChoBmgJaA9DCNMuppnuM0rAlIaUUpRoFU3oA2gWR0C/RjEWqLjxdX2UKGgGaAloD0MIhPI+juZSS8CUhpRSlGgVTegDaBZHQL9L+2wV0tB1fZQoaAZoCWgPQwg3ixcLQ8pDwJSGlFKUaBVN6ANoFkdAv006E12q1nV9lChoBmgJaA9DCLLYJhWNT0fAlIaUUpRoFU3oA2gWR0C/TcePaL4vdX2UKGgGaAloD0MIz/i+uFQpSsCUhpRSlGgVTegDaBZHQL9O72FWXC11fZQoaAZoCWgPQwjQKjOl9RdBwJSGlFKUaBVN6ANoFkdAv09rOPeYUnV9lChoBmgJaA9DCApI+x9gsT3AlIaUUpRoFU3oA2gWR0C/T+lJL/S6dX2UKGgGaAloD0MIVrYPecsHU8CUhpRSlGgVTegDaBZHQL9QPuRLbpN1fZQoaAZoCWgPQwiZR/5g4CBTwJSGlFKUaBVN6ANoFkdAv1EbQv6CUXV9lChoBmgJaA9DCJpAEYsYdkHAlIaUUpRoFU3oA2gWR0C/UY4Fiay9dX2UKGgGaAloD0MIvOgrSDP6ScCUhpRSlGgVTegDaBZHQL9R25vLowF1fZQoaAZoCWgPQwiwrZ/+szJJwJSGlFKUaBVN6ANoFkdAv1KGcQRPGnV9lChoBmgJaA9DCKUyxRwED1HAlIaUUpRoFU3oA2gWR0C/UrHtfG+9dX2UKGgGaAloD0MIkbdc/djEUMCUhpRSlGgVTegDaBZHQL9TFLORkmR1fZQoaAZoCWgPQwiHwfwVMpZRwJSGlFKUaBVN6ANoFkdAv1ORC3PRiXV9lChoBmgJaA9DCNEEiljEllHAlIaUUpRoFU3oA2gWR0C/VCWg8KXwdX2UKGgGaAloD0MIBRcrajDWU8CUhpRSlGgVTegDaBZHQL9UpaCL/CJ1fZQoaAZoCWgPQwjbGDvhJQ5PwJSGlFKUaBVN6ANoFkdAv1mKm65G0HV9lChoBmgJaA9DCHdM3ZVdwVbAlIaUUpRoFU3oA2gWR0C/WqQ7PppwdX2UKGgGaAloD0MINPYlGw8iS8CUhpRSlGgVTegDaBZHQL9bHQpF1CB1fZQoaAZoCWgPQwgPt0PDYnRTwJSGlFKUaBVN6ANoFkdAv1wnVYp2EHV9lChoBmgJaA9DCBXKwtfXjVzAlIaUUpRoFU3oA2gWR0C/XJONHYpVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15626, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x16236e170>", "add": "<function ReplayBuffer.add at 0x16236e200>", "sample": "<function ReplayBuffer.sample at 0x16236e290>", "_get_samples": "<function ReplayBuffer._get_samples at 0x16236e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16236ac80>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 68752, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwRLE0MoZAF8ABgAiAFrBHIIiABTAIgCZAF8ABgAiACIAhgAFACIARsAFwBTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZy9Vc2Vycy9hZ3VzdGluZHllLy5weWVudi92ZXJzaW9ucy8zLjEwLjIvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.10.2", "Stable-Baselines3": "1.5.0", "PyTorch": "1.13.0.dev20220610", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LinarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:875430b328864342923e4c89827ca89e3db33b2e300e7d93b2f3337a53dfcd5d
|
3 |
+
size 110181
|
ppo-LinarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LinarLander-v2/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x162525ea0>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x162525f30>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x162525fc0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x162526050>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x1625260e0>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x162526170>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x162526200>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc._abc_data object at 0x1625296c0>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {},
|
19 |
+
"observation_space": {
|
20 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
21 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
22 |
+
"dtype": "float32",
|
23 |
+
"_shape": [
|
24 |
+
8
|
25 |
+
],
|
26 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
27 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
28 |
+
"bounded_below": "[False False False False False False False False]",
|
29 |
+
"bounded_above": "[False False False False False False False False]",
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
34 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAgZW3kl9XF7VWL+p9UmDEnClyhQt3xwSSb5oX6ewucCBHK6eZ2kKPLb1ChWr/tL2G5ToPKYBXtLtZyZa+1k7h5iq5a6kPWlji97XrwKvGK+xPPLauKNXBijbU2bFZaLegW3DJn4iHLYU/0ygy5WtpolFT7Z0A7SxlxAsKP1DspWW2cFdCzXfjkonApEC80v5WqGRPZzIGru4P3hIL5NsfhzIaKZtvRDTpM4GdwOEzp11E/FC8Wz8s/+KbVwRJRwfgCK1SZZ4EwHL+PRugheilvQiluS1TO8tAxSNnyFiX6CejURf8tqYJN6m2ioI0hnqPlt31LkswqOSu6hmtw9cBS9FL7gypRi8Pkz3TOaQQ7w4zGuZ/C1ILxhENbYCwXdhW1ZrYMLg0bjs4EnhMnEyZb8Wutr1sVPvSfX5gjJ8w7kHgI+ZUnEYhjUyBm4JYUqLdGuBGhh9dE1WV+Dz1aXZ1Lbed8nSEgU4N4hXbJYlU1D2R2LP3uU1+8NKdHaSQ+y//NzeDBpj+qFiVO79bIM8qBgZYO29m9XUlx5spXdzQhJ40+DV+nAXZjp4+h9HqsbD61CR0jVbd5a6R5UPaHX1gmulExHbwiiNL7tUKcCuIbL19lDywkuXvCI7HVnakvB8fyhvib6edYeXBpfUQOAqG8TH04DtKhjoHT7oPm2tIo1bSA+JCNKsu3usHOpfUpA6GMUF9fbVD09ztKFwYWBtO+bSEThSajomiqIttUPdvC5wY8/y2Y3osweDZjEWh0BzzWoOSS/Nh104BKc2q/WVhf4hT+aRHTi5vBefumScdb+u7SvSsN3J3CO3aXoouY1PhVDQ6blKZ0/ZhQG+K3SJjEDf1K0Za+f31UMAFrhRDLxAMG6pHc/E9QGyeMLTq5HRQPrZkOxT6OhD21J5ChZqGhu3BfNGab6uwMUi2lZ0fANlUETV8YXIdT1Kx8PCVPMgYad6qXxRUOPrj1FB7BOijTHo9mPdBG2zY7MbNJcGzn9tb3WU19h16v3/beUCHSsfWlcNfhxoy0m6JVKqOvYjUlINjf0Pf2gQx+6urJhgwh98ojNg6mPzXp6AEpnu9MmcEX08vkqDAHtdPOFA1BPk0Q9XPBjyvl4cKwAB4KLloI6N6tEkaIpBOwOeol+cPQQy6CK1b+8PR2a9lFRPM2+LBQpPslIaDHkmfvMnocQhNAKgw+CJRu7+G057CclD6kNURj4Gvca6d02FHMerBY88/WqQpwSVI2TYDsM4hL8QWSINa5PJjJDLkakF7sTKv8JSUC1kFkdV+HLqCWcyE8uL/Luil6EPiLtUS89HZDxv779NZQA1OOT72mPS1NXsWY+RYBjGkKPx6cgLDJr6vdWcGzzIk3hgzAjHeV1OcEYcqpR/3A3pFHDg2IlHHFU/g5QydTNB1f/2OZCWwNbL9Gt4VcTSf9eJNnrzEvsIdExrt0fNN8JdmkDt3JJdvAktXBZ1No3T+7p3Ckn6ApM1n1POufj6wqtchtjUJZo/WZaZ32n+qoiIZ08WsTAEGAseQFiRgIlsd8MZOMMYLWC7rztN0iFwcNrYeMUpQiqhhy+05fESgjqJdsgHkPRUvJiV+LsYn66DDXCaeZ3/tJX6b1iNBysCD2VaR+qLFgg3IxlYp9alvhdS2attwB05Fh9aePxhIRszFq/6LDauvZNnsSYYLpMGhw8X6aK/kwPvJ9Q5LA+F7ohDp51rSKpid03sWxVHZCBTweSP5oUma61LFEQJMdGKYMC+J0gSzKWJB7PN9Klo0yQ8UEre6mmuTC3YWX9AczQscqmgASJHHk1IsA01T3jrjEUlsrLCFpvJ6Aaz5cou3AcEqMlE4VGdzuTcDLIPmX4yWKxYKNo0ROnq/RQqdxNVTj1FaFXwPXdCZXkwOrhkhBpKJ+PjnOnXUxUJ5QAphb1z3JSJi6wY0alMwccmBwN62l5yOud5Etl7NZC7l1FOniETd2S+r4fWcrlpPBpwVd4lA5JiUHI3JjfPdAdiUvVsEo7ArevHtggY4XZpu5nGjEJpSqw/hMxurApDt83oavEb3OopGBizXhAP2rp1xPFv2twA25lfvPSbaWD70KY+0OxPaziOyH18UIXeb7dcMjCSNvxNDIIgZxGoilf9wvIAqYOO2sYIroffJcq+iIuJ+Vv0SZsCY1RF23p73A7Y6ufbF4dD6hGWBUgge7TxCokRxMP4SYNTKz+EBDGr63FW3l+OxeiP0hAUNueRDqSBSGb+387fltjQXI2PLaLCPFt9TOuMJS0gVynYdVmNNjpg7JWTL2JN3ucTseyT+IoUo/F/mlgGeh0d340mjeHgpEmuvovY6ockasWwrpP7kMesMVeX1XuQ0LyPMGaTPWVvIjTygJkmS9yXY/FtEotDDOLljoRouhWAt9PorG83JN+soXJcDDVrVyWHHyM2MalrV/MUqZL5MN1TknHXyjmiAtNwDQAfGTgAMh380Z+aI+5uZM6xGX64qZfI+atUf4whQ71Pz422I4Cg1HqstUqeO73dYyzRTOdGxOJzFXGisSF0kXJgm6YYN+8w9pkeo7C9YoPcUDD70k8tF4cgza/l2BdoIkIHomD/qiBuLcHYrJk4SIzmsXEzyvBcm9fyhmVwHI+Dur8MM2B3LRmEuNm24YZZMz0HP/7vKjkOqQByRpE4XJtoULXkG2q4dJVlK9D0bBAFnx5yULTuVOkq6dmKe+FlezzQtRdwZum95IZMwcGDBT6tPz4IWXLGKIxIPD4gfV2mtHrixpROIGv4qAQQLkzKEIWhWcYU1nqI+l5ME1JIj8LTbXavc1NpfXjHF9utchxEBsRwZF6IYaqGIEjBt5cprAlvMuMBxMH4Sr8z9i+SAE9wQnvtjATbirq7asQDzMHog9IXHeGxEwoyqLtpW/N/prp9tHPe+sMAVzgzSAHtWA9CPeM2lF8GSsbHYSk2yJXfX8OWKTIIdJojMjR9XZR2tfqpde3qYmqsXX76Yi7WxUnPr8t3f2A7e3Rb9eLG3E2uGP9AU2csTdwAm0dgpHiTbTlGoNFctZajw3tNMg4SWoXSIP3fKTV57BmR6PbG18XnfcIWjYE7+ssTCpH7ozguiCYeRcYH9x+CUP1RR5Q5T7ZGbdgK9j80NSHLL+s56FJp+xxPDamNO3kATaQ39d03XTpU3UwaRrA2li1q5GtAc7HIQWhKF5ekgWrU22y8X5gNYG/veZBQ3Qd2tHkPaPmQnpYbrLNHgeXRcq8mShsdZp+IBsKBby+K4LSMPIft9F0lWMw/0SWa+6zRSDWURzhdYM+84PkHECpYM33R9uU84Aw+jWax7Zca02MGTXt4vlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNAAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
35 |
+
"n": 4,
|
36 |
+
"_shape": [],
|
37 |
+
"dtype": "int64",
|
38 |
+
"_np_random": "RandomState(MT19937)"
|
39 |
+
},
|
40 |
+
"n_envs": 16,
|
41 |
+
"num_timesteps": 1000000,
|
42 |
+
"_total_timesteps": 1000000,
|
43 |
+
"_num_timesteps_at_start": 0,
|
44 |
+
"seed": null,
|
45 |
+
"action_noise": null,
|
46 |
+
"start_time": 1656882112.708856,
|
47 |
+
"learning_rate": 0.0001,
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"lr_schedule": {
|
50 |
+
":type:": "<class 'function'>",
|
51 |
+
":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
52 |
+
},
|
53 |
+
"_last_obs": {
|
54 |
+
":type:": "<class 'numpy.ndarray'>",
|
55 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANVGjL7cWKg/zQ/XPZcXUbw7BLa9hPgkPgAAAAAAAAAACIC8vruQWz9M9bU9wKejO4fSfrx7UqE9AAAAAAAAAABbj7y+Gls4P+ah/r3P7KG7Mi3OvZ4OoL0AAAAAAAAAAE018b2pAqo/Z6KnvovPSb1PMRS+A8LXvQAAAAAAAAAAXsuwvjLDMD+qK1a9AYe9uzP7xD1oDna9AAAAAAAAAADI8rq+Q4sNPzauN73gCgA9LWxHvAIgT70AAAAAAAAAABpgsr5VnkI/gkHVvKv0dDzghjU8sCP+vAAAAAAAAAAAEAqrvpGTLD+YBei94PP9vEwCxjw94gC+AAAAAAAAAAC+DaG+0jsAP8LyQLz9nFI7gR6gPa4L9rwAAAAAAAAAAOaFwr5a104/gN17PZbJ0jyCGxe9eGk2PQAAAAAAAAAAGkamvpQKjj7tJ9C8dYjwO5MbXTwuMo27AAAAAAAAAABm1As8Rui0P6HRFj7UPgS937QpPMgDAj4AAAAAAAAAAIrSsL7fhS8/mhFrvNGtpLyx+7c94ttKvQAAAAAAAAAAMq+nvpuvJj+tOpe9SX1rPGNw1jla34C9AAAAAAAAAACGCzS+Lt2gP1vPq7tnBZO9KGyKPXrkEj0AAAAAAAAAADN6Fr3Z1ow/xriyvdvr7L1tbLu9AQykPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
56 |
+
},
|
57 |
+
"_last_episode_starts": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_original_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB7bjL6kYqg/SsG1PSQdVr17g8a9bW0ePgAAAAAAAAAAuPm8vm6JWz8TF5I9O4DKvPSsn7yjzoE9AAAAAAAAAAA757u+AGI4PzMCAr70hPe8dyzGvblMlr0AAAAAAAAAAABl6r2eJqo/P3evvgUQk712zA6+/nPhvQAAAAAAAAAA3YKwvgTMMD91v1m9K4iuvPUhyz0gN4m9AAAAAAAAAACmtLq+I10NPxx2gL3x4ii8W/8dvKIaib0AAAAAAAAAAO07sr5NiEI/DuDXvDAYRbvi8E48zKUDvQAAAAAAAAAAOG2qvnPBLD+wBei9guONu/+P+TxV4gC+AAAAAAAAAABS/KC+NDcAPwXjLrxmgmu82jGjPX20C70AAAAAAAAAAHPZwr5/sU4/UBNOPcteX7xjOiC9RmIZPQAAAAAAAAAAgiSmvu/0jT5u9U+8uk+bvDyjYDzGT+Q7AAAAAAAAAAAzS+U7DwC1Pw6sIj6Daqm7nWiDOwARpT0AAAAAAAAAAHW8sL69oy8/5hFrvDod1zv9Db0949tKvQAAAAAAAAAAO0qnvmmaJj/I8XW9dmKsvEMAaTtbOUy9AAAAAAAAAACGAjS+DBKhP5bPq7uB0Di9CsCGPX3kEj0AAAAAAAAAAIARE71ULI0/nXnUvcMf6L08oMO92mCKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_episode_num": 1700,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": 0.0,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoz1eSIdfUcCUhpRSlIwBbJRN6AOMAXSUR0C/Dw7qUu+RdX2UKGgGaAloD0MI7PgvEAQwU8CUhpRSlGgVTegDaBZHQL8PmtT1kDp1fZQoaAZoCWgPQwip2QOtwJtawJSGlFKUaBVN6ANoFkdAvxCR3eN1hnV9lChoBmgJaA9DCKjIIeLmxkrAlIaUUpRoFU3oA2gWR0C/EOkzsQd0dX2UKGgGaAloD0MIfT7KiAuKVsCUhpRSlGgVTegDaBZHQL8RQPWxyGV1fZQoaAZoCWgPQwh16V+SyhVXwJSGlFKUaBVN6ANoFkdAvxF+hysCDHV9lChoBmgJaA9DCOlDF9S3JkbAlIaUUpRoFU3oA2gWR0C/EiDin5zpdX2UKGgGaAloD0MI6+HLRBEBVsCUhpRSlGgVTegDaBZHQL8Seszl90B1fZQoaAZoCWgPQwhjsyPVd29ZwJSGlFKUaBVN6ANoFkdAvxK+uZCv5nV9lChoBmgJaA9DCBno2hfQeFHAlIaUUpRoFU3oA2gWR0C/EzgLApKBdX2UKGgGaAloD0MIhUTaxp/eUcCUhpRSlGgVTegDaBZHQL8TV7Ciypt1fZQoaAZoCWgPQwialIJuL1hSwJSGlFKUaBVN6ANoFkdAvxOxUjs2N3V9lChoBmgJaA9DCEpDjUKSOlfAlIaUUpRoFU3oA2gWR0C/FDCSV4X5dX2UKGgGaAloD0MIklm9w+34XcCUhpRSlGgVTegDaBZHQL8U0eTFERd1fZQoaAZoCWgPQwgl7NtJRGZcwJSGlFKUaBVN6ANoFkdAvxVWGIsRQXV9lChoBmgJaA9DCD/FceDVf1XAlIaUUpRoFU3oA2gWR0C/GlWxlg+hdX2UKGgGaAloD0MIYLAbti1QVMCUhpRSlGgVTegDaBZHQL8bN6F/QSl1fZQoaAZoCWgPQwjVdhN807BUwJSGlFKUaBVN6ANoFkdAvxuXjIaLoHV9lChoBmgJaA9DCMA9z582sVfAlIaUUpRoFU3oA2gWR0C/HFwCbMHKdX2UKGgGaAloD0MIEodsIF3FVcCUhpRSlGgVTegDaBZHQL8csE5Qxet1fZQoaAZoCWgPQwjeBN80fY1ZwJSGlFKUaBVN6ANoFkdAvx0AXZXdTHV9lChoBmgJaA9DCGGOHr+3eUjAlIaUUpRoFU3oA2gWR0C/HTtNet0WdX2UKGgGaAloD0MIKqkT0EQFWMCUhpRSlGgVTegDaBZHQL8dwmRNh3J1fZQoaAZoCWgPQwi0IJT3cVdcwJSGlFKUaBVN6ANoFkdAvx4OUr08NnV9lChoBmgJaA9DCGH7yRgfijLAlIaUUpRoFU3oA2gWR0C/HkiPMjeLdX2UKGgGaAloD0MIghyUMNOGUcCUhpRSlGgVTegDaBZHQL8etvQnhKl1fZQoaAZoCWgPQwgawFsgQRhVwJSGlFKUaBVN6ANoFkdAvx7St6ol2XV9lChoBmgJaA9DCO5AnfLo01TAlIaUUpRoFU3oA2gWR0C/HxxX4j8ldX2UKGgGaAloD0MIzlMdcjP+X8CUhpRSlGgVTegDaBZHQL8fic81XNl1fZQoaAZoCWgPQwifq63YX2tfwJSGlFKUaBVN6ANoFkdAvyANzdUKiXV9lChoBmgJaA9DCNPe4AuTI1jAlIaUUpRoFU3oA2gWR0C/IIc8s+V1dX2UKGgGaAloD0MI0lEOZhPET8CUhpRSlGgVTegDaBZHQL8lhnLJSzh1fZQoaAZoCWgPQwi5GAPrOHRfwJSGlFKUaBVN6ANoFkdAvyZ6iEg4fnV9lChoBmgJaA9DCP2DSIYcO1vAlIaUUpRoFU3oA2gWR0C/JuQ5R0lrdX2UKGgGaAloD0MIGjGzz2OWTcCUhpRSlGgVTegDaBZHQL8nyvs7dSF1fZQoaAZoCWgPQwiHa7WHvehYwJSGlFKUaBVN6ANoFkdAvygepm29c3V9lChoBmgJaA9DCP4o6sy9FmDAlIaUUpRoFU3oA2gWR0C/KHMN2C/XdX2UKGgGaAloD0MILjcY6rACX8CUhpRSlGgVTegDaBZHQL8osMMqjJx1fZQoaAZoCWgPQwj0T3CxojVRwJSGlFKUaBVN6ANoFkdAvylQvRJEpnV9lChoBmgJaA9DCISc9/9xxEvAlIaUUpRoFU3oA2gWR0C/KaGBSUC8dX2UKGgGaAloD0MINX7hlSRtSsCUhpRSlGgVTegDaBZHQL8p2sJIDo11fZQoaAZoCWgPQwiU+rK0U3NfwJSGlFKUaBVN6ANoFkdAvypN0T101nV9lChoBmgJaA9DCA8Ni1HXOV3AlIaUUpRoFU3oA2gWR0C/Kmyl3yI6dX2UKGgGaAloD0MIjbRU3o5bWsCUhpRSlGgVTegDaBZHQL8qxJDmbLF1fZQoaAZoCWgPQwjQudv10v5GwJSGlFKUaBVN6ANoFkdAvys8TZg5R3V9lChoBmgJaA9DCKqZtRSQH1rAlIaUUpRoFU3oA2gWR0C/K88w1zhhdX2UKGgGaAloD0MIl299WG/OVcCUhpRSlGgVTegDaBZHQL8sUc/+sHV1fZQoaAZoCWgPQwgAi/z6IYhWwJSGlFKUaBVN6ANoFkdAvzFMSPEKmnV9lChoBmgJaA9DCAKBzqRNK0jAlIaUUpRoFU3oA2gWR0C/Ml2ygPEsdX2UKGgGaAloD0MIv0nToGg6U8CUhpRSlGgVTegDaBZHQL8y3LYPGyZ1fZQoaAZoCWgPQwhr71NVaPlawJSGlFKUaBVN6ANoFkdAvzPhII4VAXV9lChoBmgJaA9DCBDmdi/3r13AlIaUUpRoFU3oA2gWR0C/NEMHObAldX2UKGgGaAloD0MIL2tiga85VcCUhpRSlGgVTegDaBZHQL80qkJ8fFJ1fZQoaAZoCWgPQwgVkPY/wCVUwJSGlFKUaBVN6ANoFkdAvzT2/IsAenV9lChoBmgJaA9DCMkeoWZIOlDAlIaUUpRoFU3oA2gWR0C/Nb0j5bhWdX2UKGgGaAloD0MIN24xPzfbVMCUhpRSlGgVTegDaBZHQL82Lr4Fia11fZQoaAZoCWgPQwheLXdmgl5SwJSGlFKUaBVN6ANoFkdAvzaCRyOrAHV9lChoBmgJaA9DCAjNrnsrPEnAlIaUUpRoFU3oA2gWR0C/Ny/dVNpNdX2UKGgGaAloD0MI66hqgqjmUcCUhpRSlGgVTegDaBZHQL83W1BMSK51fZQoaAZoCWgPQwh01NFxNbNVwJSGlFKUaBVN6ANoFkdAvzfR2Rq46XV9lChoBmgJaA9DCLQ5zm3C3FjAlIaUUpRoFU3oA2gWR0C/OF8NDtw8dX2UKGgGaAloD0MINnLdlPJoWcCUhpRSlGgVTegDaBZHQL85Aqaw2VF1fZQoaAZoCWgPQwiOBYVBmRpdwJSGlFKUaBVN6ANoFkdAvzmFsguAZ3V9lChoBmgJaA9DCAMjL2ti7VrAlIaUUpRoFU3oA2gWR0C/Pv3Vsk6cdX2UKGgGaAloD0MIWp2cobhoU8CUhpRSlGgVTegDaBZHQL9AEuIAOrh1fZQoaAZoCWgPQwjKoxthUeNUwJSGlFKUaBVN6ANoFkdAv0CJN5+pfnV9lChoBmgJaA9DCGQD6WLTgk7AlIaUUpRoFU3oA2gWR0C/QWx0Qsf8dX2UKGgGaAloD0MIDcLc7uUSWsCUhpRSlGgVTegDaBZHQL9Bxdu5z5p1fZQoaAZoCWgPQwhZ3eo56d1VwJSGlFKUaBVN6ANoFkdAv0Ianeizs3V9lChoBmgJaA9DCF36l6QyQ1XAlIaUUpRoFU3oA2gWR0C/Qlk+cH4XdX2UKGgGaAloD0MIyoy3lV7DWcCUhpRSlGgVTegDaBZHQL9C/fjjrAx1fZQoaAZoCWgPQwgS290DdAxSwJSGlFKUaBVN6ANoFkdAv0NR4cFQmHV9lChoBmgJaA9DCNldoKTAhlTAlIaUUpRoFU3oA2gWR0C/Q45FocrBdX2UKGgGaAloD0MIb7vQXKflS8CUhpRSlGgVTegDaBZHQL9EBkeIVM51fZQoaAZoCWgPQwhjRnh7EElRwJSGlFKUaBVN6ANoFkdAv0QmdOIqLHV9lChoBmgJaA9DCF3fh4OEj1DAlIaUUpRoFU3oA2gWR0C/RH+zhP0qdX2UKGgGaAloD0MIhA1Pr5QFTMCUhpRSlGgVTegDaBZHQL9E/oaUA1h1fZQoaAZoCWgPQwhmguFcw55SwJSGlFKUaBVN6ANoFkdAv0WlW3jMmnV9lChoBmgJaA9DCNMuppnuM0rAlIaUUpRoFU3oA2gWR0C/RjEWqLjxdX2UKGgGaAloD0MIhPI+juZSS8CUhpRSlGgVTegDaBZHQL9L+2wV0tB1fZQoaAZoCWgPQwg3ixcLQ8pDwJSGlFKUaBVN6ANoFkdAv006E12q1nV9lChoBmgJaA9DCLLYJhWNT0fAlIaUUpRoFU3oA2gWR0C/TcePaL4vdX2UKGgGaAloD0MIz/i+uFQpSsCUhpRSlGgVTegDaBZHQL9O72FWXC11fZQoaAZoCWgPQwjQKjOl9RdBwJSGlFKUaBVN6ANoFkdAv09rOPeYUnV9lChoBmgJaA9DCApI+x9gsT3AlIaUUpRoFU3oA2gWR0C/T+lJL/S6dX2UKGgGaAloD0MIVrYPecsHU8CUhpRSlGgVTegDaBZHQL9QPuRLbpN1fZQoaAZoCWgPQwiZR/5g4CBTwJSGlFKUaBVN6ANoFkdAv1EbQv6CUXV9lChoBmgJaA9DCJpAEYsYdkHAlIaUUpRoFU3oA2gWR0C/UY4Fiay9dX2UKGgGaAloD0MIvOgrSDP6ScCUhpRSlGgVTegDaBZHQL9R25vLowF1fZQoaAZoCWgPQwiwrZ/+szJJwJSGlFKUaBVN6ANoFkdAv1KGcQRPGnV9lChoBmgJaA9DCKUyxRwED1HAlIaUUpRoFU3oA2gWR0C/UrHtfG+9dX2UKGgGaAloD0MIkbdc/djEUMCUhpRSlGgVTegDaBZHQL9TFLORkmR1fZQoaAZoCWgPQwiHwfwVMpZRwJSGlFKUaBVN6ANoFkdAv1ORC3PRiXV9lChoBmgJaA9DCNEEiljEllHAlIaUUpRoFU3oA2gWR0C/VCWg8KXwdX2UKGgGaAloD0MIBRcrajDWU8CUhpRSlGgVTegDaBZHQL9UpaCL/CJ1fZQoaAZoCWgPQwjbGDvhJQ5PwJSGlFKUaBVN6ANoFkdAv1mKm65G0HV9lChoBmgJaA9DCHdM3ZVdwVbAlIaUUpRoFU3oA2gWR0C/WqQ7PppwdX2UKGgGaAloD0MINPYlGw8iS8CUhpRSlGgVTegDaBZHQL9bHQpF1CB1fZQoaAZoCWgPQwgPt0PDYnRTwJSGlFKUaBVN6ANoFkdAv1wnVYp2EHV9lChoBmgJaA9DCBXKwtfXjVzAlIaUUpRoFU3oA2gWR0C/XJONHYpVdWUu"
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 15626,
|
78 |
+
"buffer_size": 1000000,
|
79 |
+
"batch_size": 32,
|
80 |
+
"learning_starts": 50000,
|
81 |
+
"tau": 1.0,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gradient_steps": 1,
|
84 |
+
"optimize_memory_usage": false,
|
85 |
+
"replay_buffer_class": {
|
86 |
+
":type:": "<class 'abc.ABCMeta'>",
|
87 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
88 |
+
"__module__": "stable_baselines3.common.buffers",
|
89 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
90 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x16236e170>",
|
91 |
+
"add": "<function ReplayBuffer.add at 0x16236e200>",
|
92 |
+
"sample": "<function ReplayBuffer.sample at 0x16236e290>",
|
93 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x16236e320>",
|
94 |
+
"__abstractmethods__": "frozenset()",
|
95 |
+
"_abc_impl": "<_abc._abc_data object at 0x16236ac80>"
|
96 |
+
},
|
97 |
+
"replay_buffer_kwargs": {},
|
98 |
+
"train_freq": {
|
99 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
100 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
101 |
+
},
|
102 |
+
"actor": null,
|
103 |
+
"use_sde_at_warmup": false,
|
104 |
+
"exploration_initial_eps": 1.0,
|
105 |
+
"exploration_final_eps": 0.05,
|
106 |
+
"exploration_fraction": 0.1,
|
107 |
+
"target_update_interval": 625,
|
108 |
+
"_n_calls": 68752,
|
109 |
+
"max_grad_norm": 10,
|
110 |
+
"exploration_rate": 0.05,
|
111 |
+
"exploration_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVnwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwRLE0MoZAF8ABgAiAFrBHIIiABTAIgCZAF8ABgAiACIAhgAFACIARsAFwBTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZy9Vc2Vycy9hZ3VzdGluZHllLy5weWVudi92ZXJzaW9ucy8zLjEwLjIvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
114 |
+
}
|
115 |
+
}
|
ppo-LinarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74ebe93840ea098d2d5a02184d7de66cd09bdefee38d28c3b8fc8033ae09fe3e
|
3 |
+
size 44719
|
ppo-LinarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3d136a81bf44df071f97861b16a66a3c8d84abe9ec48b026c9f59f5ede1e92f
|
3 |
+
size 43905
|
ppo-LinarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LinarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000
|
2 |
+
Python: 3.10.2
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.13.0.dev20220610
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.4
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93fb09be0054daea22c872097ad044747b5dc3c170bb73d587d08761ba53fdd0
|
3 |
+
size 344644
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -46.76247849020292, "std_reward": 20.49805161392167, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-03T23:17:03.577657"}
|