End of training
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
base_model: NazaGara/NER-fine-tuned-BETO
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2002
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: NER-finetuning-BETO-PRO
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2002
|
21 |
+
type: conll2002
|
22 |
+
config: es
|
23 |
+
split: validation
|
24 |
+
args: es
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8488716662867564
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8556985294117647
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8522714269367205
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.969672080337218
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# NER-finetuning-BETO-PRO
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2388
|
48 |
+
- Precision: 0.8489
|
49 |
+
- Recall: 0.8557
|
50 |
+
- F1: 0.8523
|
51 |
+
- Accuracy: 0.9697
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0507 | 1.0 | 1041 | 0.1411 | 0.8326 | 0.8536 | 0.8430 | 0.9707 |
|
83 |
+
| 0.0308 | 2.0 | 2082 | 0.1721 | 0.8263 | 0.8405 | 0.8334 | 0.9679 |
|
84 |
+
| 0.0205 | 3.0 | 3123 | 0.1766 | 0.8446 | 0.8516 | 0.8481 | 0.9692 |
|
85 |
+
| 0.0139 | 4.0 | 4164 | 0.2043 | 0.8422 | 0.8460 | 0.8441 | 0.9684 |
|
86 |
+
| 0.0127 | 5.0 | 5205 | 0.1907 | 0.8414 | 0.8548 | 0.8481 | 0.9698 |
|
87 |
+
| 0.0084 | 6.0 | 6246 | 0.2069 | 0.8427 | 0.8470 | 0.8448 | 0.9696 |
|
88 |
+
| 0.0056 | 7.0 | 7287 | 0.2275 | 0.8533 | 0.8610 | 0.8571 | 0.9700 |
|
89 |
+
| 0.0044 | 8.0 | 8328 | 0.2307 | 0.8408 | 0.8534 | 0.8471 | 0.9698 |
|
90 |
+
| 0.0026 | 9.0 | 9369 | 0.2343 | 0.8469 | 0.8504 | 0.8487 | 0.9695 |
|
91 |
+
| 0.0024 | 10.0 | 10410 | 0.2388 | 0.8489 | 0.8557 | 0.8523 | 0.9697 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.44.0
|
97 |
+
- Pytorch 2.4.0
|
98 |
+
- Datasets 2.20.0
|
99 |
+
- Tokenizers 0.19.1
|