raulgdp commited on
Commit
ec00a91
1 Parent(s): 8aa1b33

End of training

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ base_model: NazaGara/NER-fine-tuned-BETO
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2002
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: NER-finetuning-BETO-PRO
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2002
21
+ type: conll2002
22
+ config: es
23
+ split: validation
24
+ args: es
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8488716662867564
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8556985294117647
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8522714269367205
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.969672080337218
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # NER-finetuning-BETO-PRO
44
+
45
+ This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2388
48
+ - Precision: 0.8489
49
+ - Recall: 0.8557
50
+ - F1: 0.8523
51
+ - Accuracy: 0.9697
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0507 | 1.0 | 1041 | 0.1411 | 0.8326 | 0.8536 | 0.8430 | 0.9707 |
83
+ | 0.0308 | 2.0 | 2082 | 0.1721 | 0.8263 | 0.8405 | 0.8334 | 0.9679 |
84
+ | 0.0205 | 3.0 | 3123 | 0.1766 | 0.8446 | 0.8516 | 0.8481 | 0.9692 |
85
+ | 0.0139 | 4.0 | 4164 | 0.2043 | 0.8422 | 0.8460 | 0.8441 | 0.9684 |
86
+ | 0.0127 | 5.0 | 5205 | 0.1907 | 0.8414 | 0.8548 | 0.8481 | 0.9698 |
87
+ | 0.0084 | 6.0 | 6246 | 0.2069 | 0.8427 | 0.8470 | 0.8448 | 0.9696 |
88
+ | 0.0056 | 7.0 | 7287 | 0.2275 | 0.8533 | 0.8610 | 0.8571 | 0.9700 |
89
+ | 0.0044 | 8.0 | 8328 | 0.2307 | 0.8408 | 0.8534 | 0.8471 | 0.9698 |
90
+ | 0.0026 | 9.0 | 9369 | 0.2343 | 0.8469 | 0.8504 | 0.8487 | 0.9695 |
91
+ | 0.0024 | 10.0 | 10410 | 0.2388 | 0.8489 | 0.8557 | 0.8523 | 0.9697 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.44.0
97
+ - Pytorch 2.4.0
98
+ - Datasets 2.20.0
99
+ - Tokenizers 0.19.1