--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-PRO results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8403323602066023 - name: Recall type: recall value: 0.8598345588235294 - name: F1 type: f1 value: 0.8499716070414537 - name: Accuracy type: accuracy value: 0.9712682866352591 --- # NER-finetuning-BETO-PRO This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1541 - Precision: 0.8403 - Recall: 0.8598 - F1: 0.8500 - Accuracy: 0.9713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0458 | 1.0 | 1041 | 0.1475 | 0.8485 | 0.8587 | 0.8536 | 0.9708 | | 0.0229 | 2.0 | 2082 | 0.1541 | 0.8403 | 0.8598 | 0.8500 | 0.9713 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.20.3