Update README.md
Browse files
README.md
CHANGED
@@ -1,99 +1,100 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: distilbert-base-uncased
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- conll2002
|
8 |
-
metrics:
|
9 |
-
- precision
|
10 |
-
- recall
|
11 |
-
- f1
|
12 |
-
- accuracy
|
13 |
-
model-index:
|
14 |
-
- name: distilbert-base-uncased-finetuned-ner
|
15 |
-
results:
|
16 |
-
- task:
|
17 |
-
name: Token Classification
|
18 |
-
type: token-classification
|
19 |
-
dataset:
|
20 |
-
name: conll2002
|
21 |
-
type: conll2002
|
22 |
-
config: es
|
23 |
-
split: validation
|
24 |
-
args: es
|
25 |
-
metrics:
|
26 |
-
- name: Precision
|
27 |
-
type: precision
|
28 |
-
value: 0.7348668280871671
|
29 |
-
- name: Recall
|
30 |
-
type: recall
|
31 |
-
value: 0.7311491206938088
|
32 |
-
- name: F1
|
33 |
-
type: f1
|
34 |
-
value: 0.733003260475788
|
35 |
-
- name: Accuracy
|
36 |
-
type: accuracy
|
37 |
-
value: 0.94996285742796
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
-
|
72 |
-
-
|
73 |
-
-
|
74 |
-
-
|
75 |
-
-
|
76 |
-
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
-
|
98 |
-
-
|
99 |
-
-
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2002
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: distilbert-base-uncased-finetuned-ner
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2002
|
21 |
+
type: conll2002
|
22 |
+
config: es
|
23 |
+
split: validation
|
24 |
+
args: es
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.7348668280871671
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.7311491206938088
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.733003260475788
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.94996285742796
|
38 |
+
pipeline_tag: token-classification
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# distilbert-base-uncased-finetuned-ner
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.2347
|
49 |
+
- Precision: 0.7349
|
50 |
+
- Recall: 0.7311
|
51 |
+
- F1: 0.7330
|
52 |
+
- Accuracy: 0.9500
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 2e-05
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 16
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- num_epochs: 10
|
78 |
+
|
79 |
+
### Training results
|
80 |
+
|
81 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.3477 | 1.0 | 521 | 0.2581 | 0.6392 | 0.5888 | 0.6130 | 0.9270 |
|
84 |
+
| 0.1883 | 2.0 | 1042 | 0.2224 | 0.6617 | 0.6644 | 0.6631 | 0.9370 |
|
85 |
+
| 0.1339 | 3.0 | 1563 | 0.2079 | 0.7044 | 0.7021 | 0.7033 | 0.9431 |
|
86 |
+
| 0.1039 | 4.0 | 2084 | 0.2040 | 0.7017 | 0.7221 | 0.7118 | 0.9446 |
|
87 |
+
| 0.0835 | 5.0 | 2605 | 0.2126 | 0.7306 | 0.7166 | 0.7235 | 0.9486 |
|
88 |
+
| 0.0647 | 6.0 | 3126 | 0.2221 | 0.7220 | 0.7198 | 0.7209 | 0.9478 |
|
89 |
+
| 0.0536 | 7.0 | 3647 | 0.2258 | 0.7198 | 0.7244 | 0.7221 | 0.9480 |
|
90 |
+
| 0.0443 | 8.0 | 4168 | 0.2319 | 0.7047 | 0.7334 | 0.7188 | 0.9469 |
|
91 |
+
| 0.0375 | 9.0 | 4689 | 0.2350 | 0.7182 | 0.7315 | 0.7248 | 0.9482 |
|
92 |
+
| 0.0349 | 10.0 | 5210 | 0.2347 | 0.7349 | 0.7311 | 0.7330 | 0.9500 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.43.3
|
98 |
+
- Pytorch 2.4.0
|
99 |
+
- Datasets 2.20.0
|
100 |
+
- Tokenizers 0.19.1
|