raulgdp commited on
Commit
25ae7bc
1 Parent(s): 4f13cfd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -99
README.md CHANGED
@@ -1,99 +1,100 @@
1
- ---
2
- license: apache-2.0
3
- base_model: distilbert-base-uncased
4
- tags:
5
- - generated_from_trainer
6
- datasets:
7
- - conll2002
8
- metrics:
9
- - precision
10
- - recall
11
- - f1
12
- - accuracy
13
- model-index:
14
- - name: distilbert-base-uncased-finetuned-ner
15
- results:
16
- - task:
17
- name: Token Classification
18
- type: token-classification
19
- dataset:
20
- name: conll2002
21
- type: conll2002
22
- config: es
23
- split: validation
24
- args: es
25
- metrics:
26
- - name: Precision
27
- type: precision
28
- value: 0.7348668280871671
29
- - name: Recall
30
- type: recall
31
- value: 0.7311491206938088
32
- - name: F1
33
- type: f1
34
- value: 0.733003260475788
35
- - name: Accuracy
36
- type: accuracy
37
- value: 0.94996285742796
38
- ---
39
-
40
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
- should probably proofread and complete it, then remove this comment. -->
42
-
43
- # distilbert-base-uncased-finetuned-ner
44
-
45
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
46
- It achieves the following results on the evaluation set:
47
- - Loss: 0.2347
48
- - Precision: 0.7349
49
- - Recall: 0.7311
50
- - F1: 0.7330
51
- - Accuracy: 0.9500
52
-
53
- ## Model description
54
-
55
- More information needed
56
-
57
- ## Intended uses & limitations
58
-
59
- More information needed
60
-
61
- ## Training and evaluation data
62
-
63
- More information needed
64
-
65
- ## Training procedure
66
-
67
- ### Training hyperparameters
68
-
69
- The following hyperparameters were used during training:
70
- - learning_rate: 2e-05
71
- - train_batch_size: 16
72
- - eval_batch_size: 16
73
- - seed: 42
74
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
- - lr_scheduler_type: linear
76
- - num_epochs: 10
77
-
78
- ### Training results
79
-
80
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.3477 | 1.0 | 521 | 0.2581 | 0.6392 | 0.5888 | 0.6130 | 0.9270 |
83
- | 0.1883 | 2.0 | 1042 | 0.2224 | 0.6617 | 0.6644 | 0.6631 | 0.9370 |
84
- | 0.1339 | 3.0 | 1563 | 0.2079 | 0.7044 | 0.7021 | 0.7033 | 0.9431 |
85
- | 0.1039 | 4.0 | 2084 | 0.2040 | 0.7017 | 0.7221 | 0.7118 | 0.9446 |
86
- | 0.0835 | 5.0 | 2605 | 0.2126 | 0.7306 | 0.7166 | 0.7235 | 0.9486 |
87
- | 0.0647 | 6.0 | 3126 | 0.2221 | 0.7220 | 0.7198 | 0.7209 | 0.9478 |
88
- | 0.0536 | 7.0 | 3647 | 0.2258 | 0.7198 | 0.7244 | 0.7221 | 0.9480 |
89
- | 0.0443 | 8.0 | 4168 | 0.2319 | 0.7047 | 0.7334 | 0.7188 | 0.9469 |
90
- | 0.0375 | 9.0 | 4689 | 0.2350 | 0.7182 | 0.7315 | 0.7248 | 0.9482 |
91
- | 0.0349 | 10.0 | 5210 | 0.2347 | 0.7349 | 0.7311 | 0.7330 | 0.9500 |
92
-
93
-
94
- ### Framework versions
95
-
96
- - Transformers 4.43.3
97
- - Pytorch 2.4.0
98
- - Datasets 2.20.0
99
- - Tokenizers 0.19.1
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2002
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: distilbert-base-uncased-finetuned-ner
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2002
21
+ type: conll2002
22
+ config: es
23
+ split: validation
24
+ args: es
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.7348668280871671
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.7311491206938088
32
+ - name: F1
33
+ type: f1
34
+ value: 0.733003260475788
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.94996285742796
38
+ pipeline_tag: token-classification
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # distilbert-base-uncased-finetuned-ner
45
+
46
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.2347
49
+ - Precision: 0.7349
50
+ - Recall: 0.7311
51
+ - F1: 0.7330
52
+ - Accuracy: 0.9500
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 10
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.3477 | 1.0 | 521 | 0.2581 | 0.6392 | 0.5888 | 0.6130 | 0.9270 |
84
+ | 0.1883 | 2.0 | 1042 | 0.2224 | 0.6617 | 0.6644 | 0.6631 | 0.9370 |
85
+ | 0.1339 | 3.0 | 1563 | 0.2079 | 0.7044 | 0.7021 | 0.7033 | 0.9431 |
86
+ | 0.1039 | 4.0 | 2084 | 0.2040 | 0.7017 | 0.7221 | 0.7118 | 0.9446 |
87
+ | 0.0835 | 5.0 | 2605 | 0.2126 | 0.7306 | 0.7166 | 0.7235 | 0.9486 |
88
+ | 0.0647 | 6.0 | 3126 | 0.2221 | 0.7220 | 0.7198 | 0.7209 | 0.9478 |
89
+ | 0.0536 | 7.0 | 3647 | 0.2258 | 0.7198 | 0.7244 | 0.7221 | 0.9480 |
90
+ | 0.0443 | 8.0 | 4168 | 0.2319 | 0.7047 | 0.7334 | 0.7188 | 0.9469 |
91
+ | 0.0375 | 9.0 | 4689 | 0.2350 | 0.7182 | 0.7315 | 0.7248 | 0.9482 |
92
+ | 0.0349 | 10.0 | 5210 | 0.2347 | 0.7349 | 0.7311 | 0.7330 | 0.9500 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.43.3
98
+ - Pytorch 2.4.0
99
+ - Datasets 2.20.0
100
+ - Tokenizers 0.19.1